|
|
|
|
|
|
| |
| |
|
|
|
|
| |
| |
|
|
Hi folks
I'd like to make a simple scene with the Cook & Torrance model for light
reflection instead or the common Phong model. I thought it could be easy,
but after many hours I realized it was at least not as simple as I thought.
I started using a pigment function to implement the diffuse lighting in
a sphere:
#declare fun = function { (max(0, (sx*(x-px) + sy*(y-py) + sz*(z-pz)
)/rd + amb)*0.5 }
where <px, py, pz> is the sphere center (so <x-px, y-py, z-pz> is the sphere
normal), and <sx, sy, sz> is the normalized light vector. rd is the sphere
radius and amb is the amount of ambient lighting.
Then the sphere object is declared as
sphere { <px, py, pz> rd
texture {
pigment { function { fun(x, y, z) }
color_map { [0.0 rgb <0,0.0,0.0>*2]
[1.0 rgb colr*2] }
}
finish { ambient 1 diffuse 0 }
}
}
where colr is the rgb color of the sphere. The diffuse lighting works fine,
but it is almost impossible to stablish a color map to represent all the
colors needed by the specular reflection.
So, I realized I need a way to color the pixel in position (x, y, z), or, in
other words, I need a function like this one:
texture {
pigment { color { function { fun_color(x, y, z) }
}
finish { ambient 1 diffuse 0 }
}
but, of course, POV doesn't recognize this sintaxe.
Suggestions?
Val
Post a reply to this message
|
|
| |
| |
|
|
|
|
| |
| |
|
|
"val" <val### [at] carraraus> wrote:
> So, I realized I need a way to color the pixel in position (x, y, z), or, in
> other words, I need a function like this one:
>
> texture {
> pigment { color { function { fun_color(x, y, z) }
> }
> finish { ambient 1 diffuse 0 }
> }
>
> but, of course, POV doesn't recognize this sintaxe.
> Suggestions?
Here's one possibility below. You may also like to know that POV can cope
with negative colour values. I'll post a relevant example soon.
// Persistence of Vision Ray Tracer Scene Description File
// File: PigFunc.pov
// Vers: 3.6
// Desc: Pigment function demo
// Date: 2005.02.19
// Auth: PM 2Ring
//
// -D +A0.1 +AM2 +R3
// -F -A0.4 +AM2 +R1
//
#version 3.6;
global_settings {
assumed_gamma 1
}
camera {
location <0, 5, -1> * 2.4
look_at 0
right x*image_width/image_height up y
angle 40
}
light_source {
<0, 2, -1> * 30
rgb 1
}
//Make a color_map from a0 to a1
#macro CMRange(a0, a1)color_map{[0 a0][1 a1]}#end
//Make a color_map from Black to a
#macro CMFull(a)CMRange(rgb 0, a)#end
#declare TestPig = pigment{hexagon rgb<1 .9 .5>, rgb <.85 .5 .6>, rgb <0 0
..8>}
#declare f_Pig = function{pigment{TestPig}}
//Turn a pigment function into a real-live pigment!
#declare PigRGB =
pigment{
average
pigment_map {
[1 function{f_Pig(x,y,z).red} CMFull(red 3)]
[1 function{f_Pig(x,y,z).green} CMFull(green 3)]
[1 function{f_Pig(x,y,z).blue} CMFull(blue 3)]
}
}
cylinder{
-.1*y, .1*y, 3
pigment{
PigRGB
//TestPig
}
}
//---------------------------------------------------------
Post a reply to this message
|
|
| |
| |
|
|
|
|
| |
| |
|
|
"PM 2Ring" <nomail@nomail> wrote:
> Here's one possibility below. You may also like to know that POV can cope
> with negative colour values. I'll post a relevant example soon.
>
>
> //Make a color_map from a0 to a1
> #macro CMRange(a0, a1)color_map{[0 a0][1 a1]}#end
>
> //Make a color_map from Black to a
> #macro CMFull(a)CMRange(rgb 0, a)#end
>
> #declare TestPig = pigment{hexagon rgb<1 .9 .5>, rgb <.85 .5 .6>, rgb <0 0
> ..8>}
>
> #declare f_Pig = function{pigment{TestPig}}
>
> //Turn a pigment function into a real-live pigment!
> #declare PigRGB =
> pigment{
> average
> pigment_map {
> [1 function{f_Pig(x,y,z).red} CMFull(red 3)]
> [1 function{f_Pig(x,y,z).green} CMFull(green 3)]
> [1 function{f_Pig(x,y,z).blue} CMFull(blue 3)]
> }
> }
>
> cylinder{
> -.1*y, .1*y, 3
>
> pigment{
> PigRGB
> //TestPig
> }
> }
>
> //---------------------------------------------------------
Thanks. It works! It took me a couple of days to realize that
the function should span in RGB components:
#declare fun_x = function { color_x*max(0, (sx*(x-px) + sy*(y-py) +
sz*(z-pz))/raio) + color_x*amb }
#declare fun_y = function { color_y*max(0, (sx*(x-px) + sy*(y-py) +
sz*(z-pz))/raio) + color_y*amb }
#declare fun_z = function { color_z*max(0, (sx*(x-px) + sy*(y-py) +
sz*(z-pz))/raio) + color_z*amb }
#declare PigRGB =
pigment{
average
pigment_map {
[1 function{fun_x(x,y,z)} color_map{[0 rgb 0][1 red 3]}]
[1 function{fun_y(x,y,z)} color_map{[0 rgb 0][1 green 3]}]
[1 function{fun_z(x,y,z)} color_map{[0 rgb 0][1 blue 3]}]
}
}
// create a sphere shape
sphere {
pos // center of sphere <X Y Z>
raio // radius of sphere
pigment{ PigRGB }
finish { ambient 1 diffuse 0 }
}
Val
Post a reply to this message
|
|
| |
| |
|
|
|
|
| |
| |
|
|
Hi val,
> "PM 2Ring" <nomail@nomail> wrote:
> > Here's one possibility below. You may also like to know that POV can cope
> > with negative colour values. I'll post a relevant example soon.
>
> Thanks. It works! It took me a couple of days to realize that
> the function should span in RGB components:
>
> #declare fun_x = function { color_x*max(0, (sx*(x-px) + sy*(y-py) +
> sz*(z-pz))/raio) + color_x*amb }
> #declare fun_y = function { color_y*max(0, (sx*(x-px) + sy*(y-py) +
> sz*(z-pz))/raio) + color_y*amb }
> #declare fun_z = function { color_z*max(0, (sx*(x-px) + sy*(y-py) +
> sz*(z-pz))/raio) + color_z*amb }
>
> #declare PigRGB =
> pigment{
> average
> pigment_map {
> [1 function{fun_x(x,y,z)} color_map{[0 rgb 0][1 red 3]}]
> [1 function{fun_y(x,y,z)} color_map{[0 rgb 0][1 green 3]}]
> [1 function{fun_z(x,y,z)} color_map{[0 rgb 0][1 blue 3]}]
> }
> }
> Val
Great! I forgot about cleaning up my negative colours example, but in the
mean time I'll post a related pigment function example in p.b.i., thread
"Pigment Functions". This one lets you do a fake MC Escher "Circle Limit"
effect, using stereographic projection.
Post a reply to this message
|
|
| |
| |
|
|
|
|
| |
|
|