| 
  | 
"jr" <cre### [at] gmail com> wrote:
> plane with "Honeycomb" pattern, seen through "kaleidoscope".
Wheee!   Nice job.  :)
Can you adjust the symmetry?  Have 6-fold, or 7?
After playing with this stuff a bit, it seems like that whole sin*cos xy yz zx
thing has a lot of potential as a base pattern to do all sorts of interesting
things with.  Even just the threshold can change the apparent look quite a bit.
And then you have the orthogonal plane value/slice to vary.
We can square the whole sum, square the terms, take the root, etc.
- BW
 
 Post a reply to this message 
 | 
  | 
 | 
  | 
hi,
"Bald Eagle" <cre### [at] netscape net> wrote:
> ...
> Wheee!   Nice job.  :)
start on.  :-)
> Can you adjust the symmetry?  Have 6-fold, or 7?
> After playing with this stuff a bit, it seems like that whole sin*cos xy yz zx
> thing has a lot of potential as a base pattern to do all sorts of interesting
> things with.  Even just the threshold can change the apparent look quite a bit.
yes, I just discovered that replacing "tau" with "pi * scale_factor" and using
slightly different factors, things get real .. interesting.
re your question, I answer with an Obama quote: "Yes, we can" :-)  below is
excerpted from my WIP code:
/* added bailout & max_trace */
global_settings {adc_bailout (1/254) assumed_gamma 1 max_trace_level 255}
/* #mirrors */
#declare n_ = 3;
#declare angle_ = 360 / n_;
/* epsilon */
#declare eps_ = 1e-3;
/* length of tube */
#declare len_ = 10;
/* prism with hole */
#declare pi_ = <.99,0,0>;
#declare po_ = <1.01,0,0>;
#declare pts_ = array [n_][2];
#for (i_, 0, n_-1)
  #local ta_ = vrotate(po_, <0,(angle_*i_),0>);
  #local tb_ = vrotate(pi_, <0,(angle_*i_),0>);
  #local pts_[i_][0] = <ta_.x,ta_.z>;
  #local pts_[i_][1] = <tb_.x,tb_.z>;
#end
/* rotate to centre on -z */
prism {
  linear_spline eps_, len_, 2*(1+n_),
  #for (i_,n_-1,0,-1) pts_[i_][0], #end pts_[n_-1][0],
  #for (i_,0,n_-1) pts_[i_][1], #end pts_[0][1]
  open
  sturm on
  no_shadow
  finish {ambient 0 reflection {1} specular 0}
  rotate <270,0,0>
}
regards, jr.
 
 Post a reply to this message 
 | 
  | 
 | 
  | 
"jr" <cre### [at] gmail com> wrote:
> "Bald Eagle" <cre### [at] netscape net> wrote:
> > ...
> > #declare S2P = function (V) {sin (tau*V/L)}
> > #declare C2P = function (V) {cos (tau*V/L)}
> > #declare T = 0.5;
> > #declare N = 1;
> > #declare Honeycomb = function (X, Y, Z) {pow(S2P(X)*C2P(Z) + S2P(Z) + C2P(X), N)
> > - pow(T, N)}
>
> plane with "Honeycomb" pattern, seen through "kaleidoscope".
a loop-able animation of the pattern.  warning -- weird ;-).
<https://drive.google.com/file/d/1Aet9noapf8SBgX2u62TTYMFYx5NfbckT/view?usp=sharing>
enjoy, jr.
 
 Post a reply to this message 
 | 
  |