|
|
Is it simplest and good way I choosed ?
I have two points describing axis. I want find vector perpendicular to this axis
but it is not important where it points. So, is it good way?
#local Axis=vnormalize(P1-P2);
#local Vect=(abs(vdot(Axis,x))=1?vcross(Axis,y):vcross(Axis,x));
ABX
--
#declare _=function(a,b,x){((a^2)+(b^2))^.5-x}#default {pigment{color rgb 1}}
union{plane{y,-3}plane{-x,-3}finish{reflection 1 ambient 0}}isosurface{ //ABX
function{_(x-2,y,1)|_((x+y)*.7,z,.1)|_((x+y+2)*.7,z,.1)|_(x/2+y*.8+1.5,z,.1)}
contained_by{box{<0,-3,-.1>,<3,0,.1>}}translate z*15finish{ambient 1}}//POV35
Post a reply to this message
|
|
|
|
>
> Is it simplest and good way I choosed ?
>
> I have two points describing axis. I want find vector perpendicular to this axis
> but it is not important where it points. So, is it good way?
>
> #local Axis=vnormalize(P1-P2);
> #local Vect=(abs(vdot(Axis,x))=1?vcross(Axis,y):vcross(Axis,x));
I use this:
#local vA=vnormalize(pE-pS);
#local vB=vnormalize(vcross(vA,<vA.y,vA.z,-vA.x>));
Unless pE=pS, vB will always be perpendicular to vA.
Regards,
John
--
ICQ: 46085459
Post a reply to this message
|
|