POV-Ray : Newsgroups : povray.advanced-users : shortcut for inner circle Server Time
1 Nov 2024 19:16:32 EDT (-0400)
  shortcut for inner circle (Message 1 to 6 of 6)  
From:
Subject: shortcut for inner circle
Date: 7 Dec 2001 09:40:42
Message: <jbk11ugit4l7hie7346ckncgdf76sog405@4ax.com>
I found macro to calculate radius and center of inner circle of 2d triangle. Any
idea for shorter version of it ? This works fine but I'm asking just for my
knowledge extending :-) Some vector optimizations ?

#local f_det=function(a11,a12,a21,a22){(a11*a22)-(a12*a21)};

// take two lines as pairs of points
// and calculate intersection
#macro Cross(x1,y1,x2,y2,x3,y3,x4,y4)
  #local A1=y2-y1;
  #local B1=x1-x2;
  #local C1=f_det(x2,y2,x1,y1);
  #local A2=y4-y3;
  #local B2=x3-x4;
  #local C2=f_det(x4,y4,x3,y3);
  #local D=f_det(A1,A2,B1,B2);
  (<f_det(B1,B2,C1,C2),f_det(C1,C2,A1,A2)>/D)
#end

// input A,B,C - vertices of 2d triangle
// output <center.x,center.y,radius>
#macro Inner_Circle(A,B,C)
  #local a=vlength(B-A);
  #local b=vlength(C-B);
  #local c=vlength(A-C);
  #local p=(a+b+c)/2;
  #local R=sqrt((p-a)*(p-b)*(p-c)/p);
  #local P0=R*vnormalize(vcross(vcross(B-A,C-A),C-B));
  #local P1=B+P0;
  #local P2=C+P0;
  #local R0=R*vnormalize(vcross(vcross(C-B,A-B),A-C));
  #local R1=C+R0;
  #local R2=A+R0;
  #local P=Cross(P1.x,P1.y,P2.x,P2.y,R1.x,R1.y,R2.x,R2.y);
  <P.x,P.y,R>
#end

ABX
--
#declare _=function(a,b,x){((a^2)+(b^2))^.5-x}#default {pigment{color rgb 1}}
union{plane{y,-3}plane{-x,-3}finish{reflection 1 ambient 0}}isosurface{ //ABX
function{_(x-2,y,1)|_((x+y)*.7,z,.1)|_((x+y+2)*.7,z,.1)|_(x/2+y*.8+1.5,z,.1)}
contained_by{box{<0,-3,-.1>,<3,0,.1>}}translate z*15finish{ambient 1}}//POV35


Post a reply to this message

From: Tor Olav Kristensen
Subject: Re: shortcut for inner circle
Date: 7 Dec 2001 17:36:55
Message: <3C1144B1.9F3A298D@hotmail.com>
"Wlodzimierz ABX Skiba" wrote:
> 
> I found macro to calculate radius and center of inner circle of 2d triangle. Any
> idea for shorter version of it ? This works fine but I'm asking just for my
> knowledge extending :-) Some vector optimizations ?

Yes Wlodzimierz, vector math would be my answer...    ;)

Maybe what I wrote in this post will interest you:
news://news.povray.org/3B82F267.36412849%40hotmail.com
(My reply 1. Aug. 2001 to Mark M. Wilson's thread;
"general geometry question" )

Here's some of my further comments:
news://news.povray.org/3B82FDB9.45E83FA%40hotmail.com

And here's a link to the start of that thread:
http://news.povray.org/povray.general/17701


Tor Olav


Post a reply to this message

From: Tor Olav Kristensen
Subject: Re: shortcut for inner circle
Date: 7 Dec 2001 22:05:11
Message: <3C11836F.E3B61899@hotmail.com>
Tor Olav Kristensen wrote:
> 
> "Wlodzimierz ABX Skiba" wrote:
> >
> > I found macro to calculate radius and center of inner circle of 2d triangle. Any
> > idea for shorter version of it ? This works fine but I'm asking just for my
> > knowledge extending :-) Some vector optimizations ?
> 
> Yes Wlodzimierz, vector math would be my answer...    ;)
> 
> Maybe what I wrote in this post will interest you:
> news://news.povray.org/3B82F267.36412849%40hotmail.com
> (My reply 1. Aug. 2001 to Mark M. Wilson's thread;
> "general geometry question" )
> 
> Here's some of my further comments:
> news://news.povray.org/3B82FDB9.45E83FA%40hotmail.com
> 
> And here's a link to the start of that thread:
> http://news.povray.org/povray.general/17701

It seems like I misunderstood your problem.

But now I have made a new vector math macro that
solves the correct problem.

I think I'll post it when I have had some sleep.


Tor Olav


Post a reply to this message

From: Josh English
Subject: Re: shortcut for inner circle
Date: 10 Dec 2001 13:11:59
Message: <3C14FAEC.F66CEECB@spiritone.com>
This code seems to work with all my tests. It uses the law of sines.

#macro Project(a,b)
  #local tmp = (vdot(a,b)/pow(vlength(a),2))*a;
  tmp
#end
#macro Angle(v1,v2)
  degrees(acos(vdot(v1,v2)/(vlength(v1)*vlength(v2))))
#end

#declare p0 = <-1,0,0>;
#declare p1 = <1,0,0>;
#declare p2 = <-1,-1,0>;

#declare p3 = (p0+vnormalize(p1-p0)+p0+vnormalize(p2-p0))/2;
#declare a1 = Angle(p1-p0,p3-p0);
#declare a2 = Angle(p2-p1,p0-p1)/2;
#declare a3 = 180-a1-a2;

#declare lc = sin(radians(a2))*vlength(p1-p0)/sin(radians(a3));
#declare C = p0 + vnormalize(p3-p0)*lc;

sphere { C 0.06 pigment { rgb <1,1,0> } }
#declare D = p0 +Project(p2-p0,C-p0)
sphere { D 0.06 pigment { rgb <1,1,0> } }
disc{ C, vcross(p1-p0,p2-p0), vlength(D-C) pigment { rgb <1,1,0> } }

Josh English
eng### [at] spiritonecom

"W3odzimierz ABX Skiba" wrote:
> 
> I found macro to calculate radius and center of inner circle of 2d triangle. Any
> idea for shorter version of it ? This works fine but I'm asking just for my
> knowledge extending :-) Some vector optimizations ?
> 
> #local f_det=function(a11,a12,a21,a22){(a11*a22)-(a12*a21)};
> 
> // take two lines as pairs of points
> // and calculate intersection
> #macro Cross(x1,y1,x2,y2,x3,y3,x4,y4)
>   #local A1=y2-y1;
>   #local B1=x1-x2;
>   #local C1=f_det(x2,y2,x1,y1);
>   #local A2=y4-y3;
>   #local B2=x3-x4;
>   #local C2=f_det(x4,y4,x3,y3);
>   #local D=f_det(A1,A2,B1,B2);
>   (<f_det(B1,B2,C1,C2),f_det(C1,C2,A1,A2)>/D)
> #end
> 
> // input A,B,C - vertices of 2d triangle
> // output <center.x,center.y,radius>
> #macro Inner_Circle(A,B,C)
>   #local a=vlength(B-A);
>   #local b=vlength(C-B);
>   #local c=vlength(A-C);
>   #local p=(a+b+c)/2;
>   #local R=sqrt((p-a)*(p-b)*(p-c)/p);
>   #local P0=R*vnormalize(vcross(vcross(B-A,C-A),C-B));
>   #local P1=B+P0;
>   #local P2=C+P0;
>   #local R0=R*vnormalize(vcross(vcross(C-B,A-B),A-C));
>   #local R1=C+R0;
>   #local R2=A+R0;
>   #local P=Cross(P1.x,P1.y,P2.x,P2.y,R1.x,R1.y,R2.x,R2.y);
>   <P.x,P.y,R>
> #end
> 
> ABX
> --
> #declare _=function(a,b,x){((a^2)+(b^2))^.5-x}#default {pigment{color rgb 1}}
> union{plane{y,-3}plane{-x,-3}finish{reflection 1 ambient 0}}isosurface{ //ABX
> function{_(x-2,y,1)|_((x+y)*.7,z,.1)|_((x+y+2)*.7,z,.1)|_(x/2+y*.8+1.5,z,.1)}
> contained_by{box{<0,-3,-.1>,<3,0,.1>}}translate z*15finish{ambient 1}}//POV35


Post a reply to this message

From: Tor Olav Kristensen
Subject: Re: shortcut for inner circle
Date: 10 Dec 2001 20:23:58
Message: <3C155EF8.F46FDF6D@hotmail.com>
Tor Olav Kristensen wrote:
> 
> Tor Olav Kristensen wrote:
> >
> > "Wlodzimierz ABX Skiba" wrote:
> > >
> > > I found macro to calculate radius and center of inner circle of 2d triangle. Any
> > > idea for shorter version of it ? This works fine but I'm asking just for my
> > > knowledge extending :-) Some vector optimizations ?
> >
> > Yes Wlodzimierz, vector math would be my answer...    ;)
> >
> > Maybe what I wrote in this post will interest you:
> > news://news.povray.org/3B82F267.36412849%40hotmail.com
> > (My reply 1. Aug. 2001 to Mark M. Wilson's thread;
> > "general geometry question" )
> >
> > Here's some of my further comments:
> > news://news.povray.org/3B82FDB9.45E83FA%40hotmail.com
> >
> > And here's a link to the start of that thread:
> > http://news.povray.org/povray.general/17701
> 
> It seems like I misunderstood your problem.
> 
> But now I have made a new vector math macro that
> solves the correct problem.
> 
> I think I'll post it when I have had some sleep.

Sorry,  have not had time before now to post my code.

The CircleInscribedInTriangle() macro below seems
to do the trick.


Tor Olav


// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// Copyright 2001 by Tor Olav Kristensen
// Email: tor### [at] hotmailcom
// http://www.crosswinds.net/~tok
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7

#version 3.1;

#include "colors.inc"

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// Main macro

#macro CircleInscribedInTriangle(pA, pB, pC, pCenter, Radius, vPlane)

  #local vAB = pB - pA;
  #local vBC = pC - pB;
  #local vCA = pA - pC;
  #local ab = vlength(vAB);
  #local bc = vlength(vBC);
  #local ca = vlength(vCA);
  #local vUp = vcross(vAB, vCA);
  #local S = vlength(vUp);
  #local abc = ab + bc + ca;

  #declare Radius = S/abc;
  #declare pCenter = pA + (ca*vAB - ab*vCA)/abc;
  #declare vPlane = vUp/S;

#end // macro CircleInscribedInTriangle

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// Macros for visualizations

#macro vProject(v1, v2)

  (v2*vdot(v1, v2)/vdot(v2, v2))

#end // macro vProject


#macro pt2ln(pP, pL, vL) 

  (pL + vProject(pP - pL, vL))

#end // macro pt2ln


#macro OrientedTorus(Rmaj, Rmin, vAxis)

  #local vY = vnormalize(vAxis);

  torus {
    Rmaj, Rmin
    #if (abs(vY.y) != 1)
      #local vX = vcross(y, vY);
      #local vZ = vcross(vX, vY);
      matrix <
        vX.x, vX.y, vX.z,
        vY.x, vY.y, vY.z,
        vZ.x, vZ.y, vZ.z,
           0,    0,    0
      >
    #end // if
  }

#end // macro OrientedTorus

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// Corners of triangle

#declare pA = <1, 8, 2>;
#declare pB = <-2, -3, 1>;
#declare pC = <-4, 5, -2>;

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// Draw triangle

#declare sr = 0.02;

union {
  sphere { pA, sr*4 }
  sphere { pB, sr*4 }
  sphere { pC, sr*4 }
  pigment { color Red }
}

union {
  cylinder { pA, pB, sr }
  cylinder { pB, pC, sr }
  cylinder { pC, pA, sr }
  pigment { color White }
}

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// Calculate data for inscribed circle

#declare pCtr = <0, 0, 0>;
#declare Rad = 0;
#declare vPl = <0, 0, 0>; 
 
CircleInscribedInTriangle(pA, pB, pC, pCtr, Rad, vPl)

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// Show circle and the points where it touches the triangle sides

union {
  OrientedTorus(Rad, sr, vPl)
  sphere { <0, 0, 0>, sr*3 }
  translate pCtr
  pigment { color White*2 }
}

union {
  sphere { pt2ln(pCtr, pA, pB - pA), sr*3 }
  sphere { pt2ln(pCtr, pB, pC - pB), sr*3 }
  sphere { pt2ln(pCtr, pC, pA - pC), sr*3 }
  pigment { color Cyan*2 }
}

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// The photo gear

background { color Blue/2 }

light_source { 100*<-6, -1, 7> color White }

camera {
  location 15*vPl
  look_at <0, 0, 0>
  translate pCtr
}

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7


Post a reply to this message

From: Tor Olav Kristensen
Subject: Re: shortcut for inner circle
Date: 13 Dec 2001 19:40:46
Message: <3C1947B7.9A93ECBF@hotmail.com>
Tor Olav Kristensen wrote:
>...
> #macro OrientedTorus(Rmaj, Rmin, vAxis)
> 
>   #local vY = vnormalize(vAxis);
> 
>   torus {
>     Rmaj, Rmin
>     #if (abs(vY.y) != 1)
>       #local vX = vcross(y, vY);
>       #local vZ = vcross(vX, vY);
>       matrix <
>         vX.x, vX.y, vX.z,
>         vY.x, vY.y, vY.z,
>         vZ.x, vZ.y, vZ.z,
>            0,    0,    0
>       >
>     #end // if
>   }
> 
> #end // macro OrientedTorus
>...


Ooops !

This line:

       #local vX = vcross(y, vY);

should have been:

       #local vX = vnormalize(vcross(y, vY));


Sorry about that.


Tor Olav


Post a reply to this message

Copyright 2003-2023 Persistence of Vision Raytracer Pty. Ltd.