POV-Ray : Newsgroups : povray.advanced-users : Solving n linear equations with n unknowns Server Time
1 Nov 2024 19:16:30 EDT (-0400)
  Solving n linear equations with n unknowns (Message 1 to 1 of 1)  
From: Tor Olav Kristensen
Subject: Solving n linear equations with n unknowns
Date: 7 Dec 2001 19:01:37
Message: <3C115880.F906E2EA@hotmail.com>
- with POV-Ray macros.

The macro Cross(x1,y1,x2,y2,x3,y3,x4,y4), in this thread:

news://news.povray.org/jbk11ugit4l7hie7346ckncgdf76sog405%404ax.com
http://news.povray.org/povray.advanced-users/20568/

Subject: shortcut for inner circle
Date: Fri, 07 Dec 2001 15:40:26 +0100

Newsgroups: povray.advanced-users


- made me think of some vector macros I made earlier.

I have tried to write some comments on how to use them.
(And I have also provided some simple examples.)

Note that this is a rather odd way to solve such a
system of equations, but it works.


Tor Olav


// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// Copyright 2001 by Tor Olav Kristensen
// Email: tor### [at] hotmailcom
// http://www.crosswinds.net/~tok
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7

#version 3.1;

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// Macros for solving system of 3 equations with 3 unknowns

#macro S3Prod(vA, vB, vC)

  vdot(vA, vcross(vB, vC))

#end // macro S3Prod


#macro S3E3U(vA, vB, vC, vD)

  (<S3Prod(vD, vB, vC),
    S3Prod(vA, vD, vC),
    S3Prod(vA, vB, vD)>/
    S3Prod(vA, vB, vC))

#end // macro S3E3U

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// Macros for solving system of 2 equations with 2 unknowns

#macro vCross2D(v0)

  <v0.v, -v0.u>

#end // macro vCross2D


#macro S2Prod(vA, vB)
                    
  vdot(vA, vCross2D(vB))
                      
#end // macro S2Prod


#macro S2E2U(vA, vB, vC)

  (<S2Prod(vC, vB),
    S2Prod(vA, vC)>/
    S2Prod(vA, vB))

#end // macro S2E2U

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// A little test of the S3E3U() macro:

//  4*x +2*y -7*z =  -6
// -1*x -8*y -3*z = -70
//  5*x +5*y -9*z =  30

#declare v1 = <4, -1, 5>;
#declare v2 = <2, -8, 5>;
#declare v3 = <-7, -3, -9>;
#declare v4 = <-6, -70, 9>;

#declare vS = S3E3U(v1, v2, v3, v4);

#debug "\n\n"
#debug concat ("x = ", str(vS.x, 0, -1))
#debug "\n"
#debug concat ("y = ", str(vS.y, 0, -1))
#debug "\n"
#debug concat ("z = ", str(vS.z, 0, -1))
#debug "\n\n"

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// A little test of the S2E2U() macro:

//  2*u -3*v = -20
//  1*u +7*v =  58

#declare v1 = <2, 1>;
#declare v2 = <-3, 7>;
#declare v3 = <-20, 58>;

#declare vT = S2E2U(v1, v2, v3);

#debug "\n\n"
#debug concat ("u = ", str(vT.u, 0, -1))
#debug "\n"
#debug concat ("v = ", str(vT.v, 0, -1))
#debug "\n\n"

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
/*

 About the macro S3Prod()

 Scalar Triple Product

 If vA, vB and vC are 3D row vectors in a 3x3 matrix, then the result
 of S3Prod(vA, vB, vC) is the determinand of that matrix.

 vA = <a1, a2, a3>
 vB = <b1, b2, b3>
 vC = <c1, c2, c3>

 | a1 a2 a3 |
 | b1 b2 b3 | = S3Prod(vA, vB, vC)
 | c1 c2 c3 |

 S3Prod(vA, vB, vC)
 = a1*(b2*c3 - b3*c2) + a2*(b3*c1 - b1*c3) + a3*(b1*c2 - b2*c1)

 Note that this is also true if vA, vB and vC are column vectors in
 a 3x3 matrix:

 | a1 b1 c1 |
 | a2 b2 c2 | = S3Prod(vA, vB, vC)
 | a3 b3 c3 |

*/
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
/*

 About the macro S3E3U()

 "Solve 3 Equations with 3 Unknowns"

 The unknowns are; x, y and  z
 a1, a2, a3, b1, b2, b3, c1, c2 and c3 are known constants

   a1*x + b1*y + c1*z = d1
   a2*x + b2*y + c2*z = d2
   a3*x + b3*y + c3*z = d3

   a1         b1         c1         d1
   a2 * x  +  b2 * y  +  c2 * z  =  d2
   a3         b3         c3         d3

 If one considers vA, vB, vC and vD as 3D column vectors, where:

 vA = <a1, a2, a3>
 vB = <b1, b2, b3>
 vC = <c1, c2, c3>
 vD = <d1, d2, d3>

 Then the problem can be rewritten like this:

 vA*x + vB*y + vC*z = vD

 Now if one calls the macro like this:

 S3E3U(vA, vB, vC, vD)

 -it will return a 3D column vector; <x, y, z>, where the x, y and z
 components are the solutions to our system of equations above.

   a1 b1 c1     x     d1
   a2 b2 c2  *  y  =  d2
   a3 b3 c3     z     d3

*/
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
/*

 About the macro S2E2U()

 "Solve 2 Equations with 2 Unknowns"

 The unknowns are; u and v
 a1, a2, b1, b2, c1 and c2 are known constants

   a1*u + b1*v = c1
   a2*u + b2*v = c2


   a1         b1         c1
      * u  +     * v  =    
   a2         b2         c2


 If one considers vA, vB and vC as 2D column vectors, where:

 vA = <a1, a2>
 vB = <b1, b2>
 vC = <c1, c2>

 Then the problem can be rewritten like this:

 vA*u + vB*v = vC


 Now if one calls the macro like this:

 S2E2U(vA, vB, vC)

 - it will return a 2D column vector; <u, v>, where the u and v
 components are the solutions to our system of equations above.

   a1  b1      u       c1
           *       =     
   a2  b2      v       c2

*/
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7

/*
 To see how to make the Dot4D(), vCross4D(), Dot5D() and
 vCross5D() macros below, check these links:

 http://news.povray.org/povray.advanced-users/17643/113743/#113743
 news://news.povray.org/3B7DC4F1.C18AF6E3%40hotmail.com
 
 Subject: About determinands and n-dimensional cross products
 Date: Sat, 18 Aug 2001 03:29:21 +0200
 From: Tor Olav Kristensen <tor### [at] hotmailcom>
 Newsgroups: povray.advanced-users
*/

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// Macros for solving system of 4 equations with 4 unknowns
/*

#macro S4Prod(vA, vB, vC, vD)

  Dot4D(vA, vCross4D(vB, vC, vD))

#end // macro S4Prod


#macro S4E4U(vA, vB, vC, vD, vE)

  (<S4Prod(vE, vB, vC, vD),
    S4Prod(vA, vE, vC, vD),
    S4Prod(vA, vB, vE, vD),
    S4Prod(vA, vB, vC, vE),
    >/
    S4Prod(vA, vB, vC, vD))

#end // macro S4E4U

*/
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// Macros for solving system of 5 equations with 5 unknowns
/*

#macro S5Prod(vA, vB, vC, vD, vE)

  Dot5D(vA, vCross5D(vB, vC, vD, vE))

#end // macro S5Prod


#macro S5E5U(vA, vB, vC, vD, vE, vF)

  (<S5Prod(vF, vB, vC, vD, vE),
    S5Prod(vA, vF, vC, vD, vE),
    S5Prod(vA, vB, vF, vD, vE),
    S5Prod(vA, vB, vC, vF, vE),
    S5Prod(vA, vB, vC, vD, vF),
    >/
    S5Prod(vA, vB, vC, vD, vE))

#end // macro S5E5U

*/
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7

// And so on... (If POV-Ray had supported higher dimensional vectors.)

// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7


Post a reply to this message

Copyright 2003-2023 Persistence of Vision Raytracer Pty. Ltd.