|
 |
"Kenneth" <kdw### [at] gmail com> wrote:
> So the (naive) question that I've always pondered is, would CUBING the
> appropriate values-- instead of squaring them-- produce an even tighter fit
> between function and data points? (Assuming that I understand anything at all
> about why even 'squaring' is the accepted method, ha.) Although, I imagine that
> squaring is perhaps 'good enough', and that cubing would be an unnecessary and
> more complex mathematical step.
>
> From reading at least various Wikipedia pages re: the discovery or invention of
> 'sum of squares' etc, it kind of gives me the impression that Gauss et al came
> up with the method in an empirical way(?) rather than from any theoretical
> standpoint. And that it simply proved useful.
https://math.stackexchange.com/questions/63238/why-do-we-use-a-least-squares-fit
Post a reply to this message
|
 |