|
|
Jellby wrote:
>
> - Circles with radius R.
> - Centers of circles form a equilateral triangle ABC of side L
> - All 3 circles are tangent to a "circumscribed" triangle abc of side l
> - Circle centered in A touches abc in P and Q.
> - aPA is a triangle with angles of 30, 90 and 60 degrees, one leg (PA) is R,
> the other leg (aP) should be easy to calculate: sin(30)/R=sin(60)/aP
> - The outer's triangle side (ab) is: aP+AB+Sb = 2*aP+L
> - The relationship between R and L should be easy too: sin(60)=L/(2*R)
> - I may be mistaken.
>
Looks great, and thanks, but... What's the "S" in Sb? :-}
Post a reply to this message
|
|