|
|
Among other things, LibraryMan wrote:
> I am trying to figure out, because my geometry is weak, how to create a
> Gothic trefoil design (http://www.newyorkcarver.com/geometry/Trifoil.htm)
> fitting "comfortably" within another equilateral arch
> (http://www.newyorkcarver.com/geometry/equilarch.htm).
>
> Or, put another way, how to fit three mutually equidistant congruent
> circles such that each circle is tangent to two adjacent sides of an
> equilateral triangle.
> Maybe someone could help me express the numeric relationships based on an
> eq. triangle with one side = "x"?
- Circles with radius R.
- Centers of circles form a equilateral triangle ABC of side L
- All 3 circles are tangent to a "circumscribed" triangle abc of side l
- Circle centered in A touches abc in P and Q.
- aPA is a triangle with angles of 30, 90 and 60 degrees, one leg (PA) is R,
the other leg (aP) should be easy to calculate: sin(30)/R=sin(60)/aP
- The outer's triangle side (ab) is: aP+AB+Sb = 2*aP+L
- The relationship between R and L should be easy too: sin(60)=L/(2*R)
- I may be mistaken.
--
light_source{9+9*x,1}camera{orthographic look_at(1-y)/4angle 30location
9/4-z*4}light_source{-9*z,1}union{box{.9-z.1+x clipped_by{plane{2+y-4*x
0}}}box{z-y-.1.1+z}box{-.1.1+x}box{.1z-.1}pigment{rgb<.8.2,1>}}//Jellby
Post a reply to this message
|
|