|
|
> One of the trickiest parts (I didn't
> forsee that!) was to generate the coordinates of the initial tetrahedron!
It's a bit late I guess, but FYI, the points <K, K, K>, <-K, -K, K>,
<K, -K, -K>, <-K, K, -K> (where K = R/sqrt(3)) form a regular tetrahedron
and are all on a sphere of radius R (centered at the origin). This is much
easier than letting one of the points be <0, 1, 0> and then trying to work
out the rest of them.
Anders
--
light_source{6#local D=#macro B(E)#macro A(D)#declare E=(E-#declare
C=mod(E D);C)/D;C#end#while(E)#if(A(8)=7)#declare D=D+2.8;#else#if(
C>2)}torus{1..2clipped_by{box{-2y}}rotate<1 0C>*90translate<D+1A(2)
*2+1#else}cylinder{0(C-v=1).2translate<D+C*A(2)A(4)#end-2 13>finish
{specular 1}pigment{rgb x}#end#end#end-8;1B(445000298)B(519053970)B
(483402386)B(1445571258)B(77778740)B(541684549)B(42677491)B(70)}
Post a reply to this message
|
|