|
 |
>
> another example of sphere sweep as on iso
I could not spot any non-connected cylinder
ends in that image, so I thought that maybe
the source code below could be of interest
for you.
But maybe you have figured this out already...
Tor Olav
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
// Copyright 2002 by Tor Olav Kristensen
// Email: tor### [at] hotmail com
// http://www.crosswinds.net/~tok
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
#version 3.5;
#include "colors.inc"
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
/*
// A macro that I once made.
// (Compare to the second macro to see similarities.)
#macro Dist2LnSegm(pP, pA, pB)
#local vL = pB - pA;
#local ss = vdot(pP - pA, vL)/vdot(vL, vL);
vlength(pP - pA - max(0, min(ss, 1))*vL)
#end // Dist2LnSegm
*/
#macro CylinderFunction(pA, pB, Radius)
#local Ax = pA.x;
#local Ay = pA.y;
#local Az = pA.z;
#local vL = pB - pA;
#local Lx = vL.x;
#local Ly = vL.y;
#local Lz = vL.z;
#local LL = vdot(vL, vL);
#local vD = vL/LL;
#local Dx = vD.x;
#local Dy = vD.y;
#local Dz = vD.z;
#local AD = vdot(pA, vD);
function {
sqrt(
(x - Ax - max(0, min(x*Dx + y*Dy + z*Dz - AD, 1))*Lx)^2
+(y - Ay - max(0, min(x*Dx + y*Dy + z*Dz - AD, 1))*Ly)^2
+(z - Az - max(0, min(x*Dx + y*Dy + z*Dz - AD, 1))*Lz)^2
)
-Radius
}
#end // macro CylinderFunction
/*
Some notes about the macro above.
Distance from pP = <x, y, z> to line segment between pA and pB is:
Dist = vlength(pP - pA - max(0, min(ss, 1))*vL)
where ss =
vdot(pP - pA, vL)/vdot(vL, vL) =
vdot(pP - pA, vL)/LL =
(vdot(pP, vL) - vdot(pA, vL))/LL =
vdot(pP, vL)/LL - vdot(pA, vL)/LL =
vdot(pP, vL/LL) - vdot(pA, vL/LL) =
vdot(pP, vD) - vdot(pA, vD) =
vdot(pP, vD) - AD =
pP.x*vD.x + pP.y*vD.y + pP.z*vD.z - AD =
x*Dx + y*Dy + z*Dz - AD
Distance from pP to cylinder "between" pA and pB is:
Dist - Radius
*/
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
#declare p1 = <-3, 2, 4>;
#declare p2 = <2, -1, 0>;
#declare R = 0.5;
#declare MyCylFn = CylinderFunction(p1, p2, R)
isosurface {
function { MyCylFn(x, y, z) }
contained_by { sphere { <0, 0, 0>, 6 } }
pigment { color White }
}
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
background { color (Blue + Cyan)/4 }
light_source {
<3, 3, -2>*10
color White
}
camera {
location -5*z
look_at 0*y
}
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7
Post a reply to this message
|
 |