POV-Ray : Newsgroups : povray.off-topic : Wolfram's rule 110 bit Server Time
19 Jan 2025 15:46:39 EST (-0500)
  Wolfram's rule 110 bit (Message 1 to 10 of 14)  
Goto Latest 10 Messages Next 4 Messages >>>
From: Darren New
Subject: Wolfram's rule 110 bit
Date: 22 Dec 2010 18:07:55
Message: <4d1284cb@news.povray.org>
http://en.wikipedia.org/wiki/Turing_completeness

"""
A computer with access to an infinite tape of data is sometimes more 
powerful than a Turing machine, because the tape can in principle contain 
the solution to the halting problem, or some other undecidable problem. An 
infinite tape of data is called a Turing oracle. Even a Turing oracle with 
random data is not computable (with probability 1), since there are only 
countably many computations but uncountably many oracles. So a computer with 
a random Turing oracle can compute things that a Turing machine cannot.
"""

Ha! I knew there was a reason I thought the argument that Rule 110 was 
turing complete was a bit flakey.  Initializing an infinite tape for a 
turing machine at least makes it more powerful than one with an 
uninitialized tape. And rule 110 needs an infinitely initialized tape.

-- 
Darren New, San Diego CA, USA (PST)
   Serving Suggestion:
     "Don't serve this any more. It's awful."


Post a reply to this message

From: clipka
Subject: Re: Wolfram's rule 110 bit
Date: 4 Jan 2011 11:35:31
Message: <4d234c53@news.povray.org>
Am 23.12.2010 00:07, schrieb Darren New:

> Ha! I knew there was a reason I thought the argument that Rule 110 was
> turing complete was a bit flakey. Initializing an infinite tape for a
> turing machine at least makes it more powerful than one with an
> uninitialized tape. And rule 110 needs an infinitely initialized tape.

That's not a problem in cellular automata, as they - by definition - 
have an infinitely initialized "tape" (or, rather, grid of cells).

Also note that rule 110 was proven to be /Turing complete/, not /Turing 
equivalent/.


Post a reply to this message

From: Darren New
Subject: Re: Wolfram's rule 110 bit
Date: 4 Jan 2011 13:47:24
Message: <4d236b3c$1@news.povray.org>
clipka wrote:
> Am 23.12.2010 00:07, schrieb Darren New:
> 
>> Ha! I knew there was a reason I thought the argument that Rule 110 was
>> turing complete was a bit flakey. Initializing an infinite tape for a
>> turing machine at least makes it more powerful than one with an
>> uninitialized tape. And rule 110 needs an infinitely initialized tape.
> 
> That's not a problem in cellular automata, as they - by definition - 
> have an infinitely initialized "tape" (or, rather, grid of cells).

Well, there's a problem with that, tho. Let's initialize the grid to be 1 if 
the program represented by the X coordinate halts with the input represented 
by the Y coordinate, and 0 if it doesn't. Bingo - just solved the halting 
problem.

I'm not convinced. I'm not sure either way, mind. It just seems flakey and 
not something you can assume.

Yes, a CA does an infinite amount of computation in each step. It's not 
obvious to me that doing an infinite amount of computation before you 
*start* makes it legal. Doing it with a multi-stage CA would work, but then 
it wouldn't be rule 110 any more.

-- 
Darren New, San Diego CA, USA (PST)
   Serving Suggestion:
     "Don't serve this any more. It's awful."


Post a reply to this message

From: clipka
Subject: Re: Wolfram's rule 110 bit
Date: 4 Jan 2011 15:08:48
Message: <4d237e50@news.povray.org>
Am 04.01.2011 19:47, schrieb Darren New:
> clipka wrote:
>> Am 23.12.2010 00:07, schrieb Darren New:
>>
>>> Ha! I knew there was a reason I thought the argument that Rule 110 was
>>> turing complete was a bit flakey. Initializing an infinite tape for a
>>> turing machine at least makes it more powerful than one with an
>>> uninitialized tape. And rule 110 needs an infinitely initialized tape.
>>
>> That's not a problem in cellular automata, as they - by definition -
>> have an infinitely initialized "tape" (or, rather, grid of cells).
>
> Well, there's a problem with that, tho. Let's initialize the grid to be
> 1 if the program represented by the X coordinate halts with the input
> represented by the Y coordinate, and 0 if it doesn't. Bingo - just
> solved the halting problem.

You just added an oracle.

> I'm not convinced. I'm not sure either way, mind. It just seems flakey
> and not something you can assume.

Why not? Both CA and Turing machine are theoretical constructs anyway, 
so you can assume just about anything.

> Yes, a CA does an infinite amount of computation in each step. It's not
> obvious to me that doing an infinite amount of computation before you
> *start* makes it legal. Doing it with a multi-stage CA would work, but
> then it wouldn't be rule 110 any more.

Actually you don't even need pre-initialized cells (or infinitely many 
cells, for that matter) any more than you do with a Turing machine, if 
you go for a CA with more than just two states.

All you need is a set of special states to represent some 
"initialization area" which you place on both sides of your "payload 
data", defined in such a way that it moves outward at 1 cell per cycle 
while auto-generating the desired "background pattern".

There - you just eliminated the need for any pre-calculation. As the 
maximum propagation speed of any pattern in a CA is 1 cell per cycle, 
you are guaranteed to have the "background pattern" wherever you need 
it. Flaw fixed.


Post a reply to this message

From: clipka
Subject: Re: Wolfram's rule 110 bit
Date: 4 Jan 2011 15:17:01
Message: <4d23803d$1@news.povray.org>
Am 04.01.2011 21:08, schrieb clipka:
>
> Actually you don't even need pre-initialized cells (or infinitely many
> cells, for that matter) any more than you do with a Turing machine, if
> you go for a CA with more than just two states.
>
> All you need is a set of special states to represent some
> "initialization area" which you place on both sides of your "payload
> data", defined in such a way that it moves outward at 1 cell per cycle
> while auto-generating the desired "background pattern".
>
> There - you just eliminated the need for any pre-calculation. As the
> maximum propagation speed of any pattern in a CA is 1 cell per cycle,
> you are guaranteed to have the "background pattern" wherever you need
> it. Flaw fixed.

... oh, and to overcome the need of infinitely many cells you can of 
course place a "cell factory" at each end of the string of cells, each 
of which adds one more cell per cycle.


Post a reply to this message

From: Darren New
Subject: Re: Wolfram's rule 110 bit
Date: 4 Jan 2011 15:56:55
Message: <4d238997$1@news.povray.org>
clipka wrote:
> You just added an oracle.

Yep. That's kind of the point I'm making.

>> I'm not convinced. I'm not sure either way, mind. It just seems flakey
>> and not something you can assume.
> 
> Why not? Both CA and Turing machine are theoretical constructs anyway, 
> so you can assume just about anything.

Why not? Because if I allow for infinite initialization, I can calculate 
things with a CA that I can't calculate with a TM. You just pointed that out 
above.

> There - you just eliminated the need for any pre-calculation. As the 
> maximum propagation speed of any pattern in a CA is 1 cell per cycle, 
> you are guaranteed to have the "background pattern" wherever you need 
> it. Flaw fixed.

It's only "flaw fixed" if you want to claim that what you just created is 
rule 110. That's like arguing that a 1-state TM is universal, because all 
you have to do is add a few more states.

I'm not arguing that a CA can't be Turing complete. I'm arguing that 
*Wolfram's* CA requires an infinite amount of initialization *before* it can 
function as a UTM.

Given that a CA does an infinite amount of computation each step, I just 
don't know if that's problematic or not. Naturally Wolfram says it isn't, 
but I haven't heard it addressed anywhere, and I've looked.

-- 
Darren New, San Diego CA, USA (PST)
   Serving Suggestion:
     "Don't serve this any more. It's awful."


Post a reply to this message

From: clipka
Subject: Re: Wolfram's rule 110 bit
Date: 4 Jan 2011 17:22:24
Message: <4d239da0$1@news.povray.org>
Am 04.01.2011 21:56, schrieb Darren New:

>> There - you just eliminated the need for any pre-calculation. As the
>> maximum propagation speed of any pattern in a CA is 1 cell per cycle,
>> you are guaranteed to have the "background pattern" wherever you need
>> it. Flaw fixed.
>
> It's only "flaw fixed" if you want to claim that what you just created
> is rule 110. That's like arguing that a 1-state TM is universal, because
> all you have to do is add a few more states.

No, not really. Your argument why 110 is flawed is based on the 
assumption that its initialization /may/ be some kind of oracle. My 
argument shows that this is not necessarily the case - and in particular 
that it is /never/ the case if the CA is pre-initialized with a regular 
pattern, as in that case you can always build a CA that simulates the 
original CA without requiring infinite initialization; as the proof for 
the Turing-completeness of Rule 110 uses such a regular pattern, there 
is no oracle involved in the setup.

> I'm not arguing that a CA can't be Turing complete. I'm arguing that
> *Wolfram's* CA requires an infinite amount of initialization *before* it
> can function as a UTM.

And that's no problem, because CA are allowed to have that /by definition/.

Yes, that might make a CA /more/ powerful than a UTM. But that doesn't 
mean it can't /simulate/ a UTM (thus making it Turing-complete), or that 
its setup procedure /necessarily/ makes it any more difficult than a UTM 
to actually simulate it in real life, or whatever problem it is you have 
with that infinite initialization. In some cases it might be, but in the 
case of simulating a UTM it isn't.

> Given that a CA does an infinite amount of computation each step, I just
> don't know if that's problematic or not. Naturally Wolfram says it
> isn't, but I haven't heard it addressed anywhere, and I've looked.

Note that even if you kind of have infinite "ROM" in a CA, within 
limited time you can only access a limited amount of it (at most 2*N+1 
cells in a 1D automaton, where N is the number of steps you compute), 
because the information needs to propagate to the place where the output 
is to end up. So effectively you're only initializing a limited number 
of cells, unless the CA runs infinitely without ever entering a 
repeating sequence.


Post a reply to this message

From: Darren New
Subject: Re: Wolfram's rule 110 bit
Date: 4 Jan 2011 17:48:24
Message: <4d23a3b8@news.povray.org>
clipka wrote:
> And that's no problem, because CA are allowed to have that /by definition/.

That right there is what I'm asking about. I've never seen a definition that 
allows for a CA to have an infinite initialization other than to a default 
state.  Do you have a citation to a definition that describes this? I am 
having trouble coming up with a trivial way to define what would be the 
allowable initialization and what would be the disallowed initialization 
without making reference to something outside the realm of CAs. Perhaps if 
you can describe its state based on a RE function of its index or something?

Note that a TM that just gets its initial tape initialized to purely random 
symbols is also strictly more powerful than a TM that gets its tape 
initialized to a constant. The thing about the TM is you can show that if 
you initialize once cell per step, or if you keep a single extra register 
with the index of the highest-read cell, you can avoid doing an infinite 
initialization to start. (I.e., this would be the equivalent to the 
tack-initializers-on-the-ends you were talking about for the linear CA.)

> unless the CA runs infinitely without ever entering a 
> repeating sequence.

You mean, like a UTM might? ;-)

-- 
Darren New, San Diego CA, USA (PST)
   Serving Suggestion:
     "Don't serve this any more. It's awful."


Post a reply to this message

From: Kevin Wampler
Subject: Re: Wolfram's rule 110 bit
Date: 4 Jan 2011 19:13:40
Message: <4d23b7b4$1@news.povray.org>
On 1/4/2011 12:56 PM, Darren New wrote:
>
> Given that a CA does an infinite amount of computation each step, I just
> don't know if that's problematic or not. Naturally Wolfram says it
> isn't, but I haven't heard it addressed anywhere, and I've looked.
>

Right after the rule 110 UTM result was announced I read something 
talking about exactly your argument: 
http://cs.nyu.edu/pipermail/fom/2007-October/012156.html (response from 
Tod Rowland here 
http://forum.wolframscience.com/showthread.php?s=&threadid=1472)

I haven't read the proof, so I can't comment on it with any actual 
knowledge, but this is the internet so I'll go ahead and say that my 
impression is that the definition of "smallest universal machine" wasn't 
defined precisely enough in the first place, and it seems, not 
surprisingly, that you can "abuse" the initialization of the cells in a 
CA.  How one measures the "complexity" of such a machine seems to be a 
matter of social convention more than anything else.  I'd personally be 
inclined not to allow such initializations, but clearly Wolfram is of a 
different mind.


Post a reply to this message

From: Darren New
Subject: Re: Wolfram's rule 110 bit
Date: 4 Jan 2011 20:28:53
Message: <4d23c955$1@news.povray.org>
Kevin Wampler wrote:
> On 1/4/2011 12:56 PM, Darren New wrote:
>>
>> Given that a CA does an infinite amount of computation each step, I just
>> don't know if that's problematic or not. Naturally Wolfram says it
>> isn't, but I haven't heard it addressed anywhere, and I've looked.
>>
> 
> Right after the rule 110 UTM result was announced I read something 
> talking about exactly your argument: 
> http://cs.nyu.edu/pipermail/fom/2007-October/012156.html (response from 
> Tod Rowland here 
> http://forum.wolframscience.com/showthread.php?s=&threadid=1472)

Cool. Altho I think we're talking more about the Cawley post on that page. I 
understand the abstract, but I'm not sure what the implications are of 
having CAs whose behavior is decidable on all finite initializations and 
undecidable on an infinite repetative initialization.

> How one measures the "complexity" of such a machine seems to be a 
> matter of social convention more than anything else.  

Well, I think it's more than one needs to define what is meant.

If you can prove that an infinite repetitive initialization doesn't ever 
give you more power than a constant initialization (i.e., in a similar way 
as you can prove that extra tapes don't help a TM be more universal), then 
I'd accept the 110 proof. But I didn't know if the Cawley paper makes that 
implication or not.

-- 
Darren New, San Diego CA, USA (PST)
   Serving Suggestion:
     "Don't serve this any more. It's awful."


Post a reply to this message

Goto Latest 10 Messages Next 4 Messages >>>

Copyright 2003-2023 Persistence of Vision Raytracer Pty. Ltd.