POV-Ray : Newsgroups : povray.binaries.images : Helical SDF for Isosurfaces Server Time
9 Jan 2025 18:58:21 EST (-0500)
  Helical SDF for Isosurfaces (Message 21 to 24 of 24)  
<<< Previous 10 Messages Goto Initial 10 Messages
From: Tor Olav Kristensen
Subject: Re: Helical SDF for Isosurfaces
Date: 26 Dec 2024 13:30:00
Message: <web.676d9f804a98c6d672cba4c589db30a9@news.povray.org>
"Chris R" <car### [at] comcastnet> wrote:
>...
> Good catch!
>
> I actually modified f_normalized_atan2 as follows:
>
> #declare f_normalized_atan2 = function(x,y) {
>     select(x,
>         tau + atan2(x,y),
>         pi,
>         atan2(x,y)
>     )
> }
>
> It's infinitesimally more efficient because you don't have to calculate
> atan2(+/-0,N), and gets rid of the mod arithmetic and addition where it isn't
> needed.

Sorry Chris,

It looked promising, but f_normalized_atan2(0, 1) returns pi instead of 0.

Rewriting it like this will solve that problem:

#declare f_normalized_atan2 =
    function(x, y) {
        select(
            x,
            atan2(x, y) + 2*pi,
            select(y, pi, 0),
            atan2(x, y)
        )
    }
;

Note that all these rewrites of the atan2() function does not trigger a "Domain
error", like atan2(0, 0) does when called outside a function.

--
Tor Olav
http://subcube.com
https://github.com/t-o-k


Post a reply to this message

From: Tor Olav Kristensen
Subject: Re: Helical SDF for Isosurfaces
Date: 26 Dec 2024 21:05:00
Message: <web.676e0a8e4a98c6d63ecca46d89db30a9@news.povray.org>
Below are the results of some atan2-tests I just did.

Some constants:

  pi/2 = 1.570796326794897
  pi   = 3.141592653589793
3*pi/2 = 4.712388980384690
2*pi   = 6.283185307179586

tau = 2*pi

Z = 1e-100


Here the functions are given valid arguments:

The results for atan2() are all in the closed interval [-pi, +pi]

atan2(-0, -1) = -3.141592653589793
atan2(-Z, -1) = -3.141592653589793

atan2(-1, -Z) = -1.570796326794897
atan2(-1, -0) = -1.570796326794897
atan2(-1, +0) = -1.570796326794897
atan2(-1, +Z) = -1.570796326794897

atan2(-Z, +1) = -0
atan2(-0, +1) = -0

atan2(+0, +1) = +0
atan2(+Z, +1) = +0

atan2(+1, +Z) = +1.570796326794897
atan2(+1, +0) = +1.570796326794897
atan2(+1, -0) = +1.570796326794897
atan2(+1, -Z) = +1.570796326794897

atan2(+Z, -1) = +3.141592653589793
atan2(+0, -1) = +3.141592653589793


Atan2_Fn =
    function(a, b) {
        mod(atan2(a, b) + tau, tau)
    }

The results for Atan2_Fn() are all in the half-open interval [+0, +tau)

Atan2_Fn(-Z, +1) = +0
Atan2_Fn(-0, +1) = +0
Atan2_Fn(+0, +1) = +0
Atan2_Fn(+Z, +1) = +0

Atan2_Fn(+1, +Z) = +1.570796326794897
Atan2_Fn(+1, +0) = +1.570796326794897
Atan2_Fn(+1, -0) = +1.570796326794897
Atan2_Fn(+1, -Z) = +1.570796326794897

Atan2_Fn(+Z, -1) = +3.141592653589793
Atan2_Fn(+0, -1) = +3.141592653589793
Atan2_Fn(-0, -1) = +3.141592653589793
Atan2_Fn(-Z, -1) = +3.141592653589793

Atan2_Fn(-1, -Z) = +4.712388980384690
Atan2_Fn(-1, -0) = +4.712388980384690
Atan2_Fn(-1, +0) = +4.712388980384690
Atan2_Fn(-1, +Z) = +4.712388980384690


n_atan2 =
    function(a, b) {
        atan2(a, b) + select(a, tau, 0)
    }

The results for n_atan2() should all be in the half-open interval [+0, +tau)

n_atan2(-Z, +1) = +6.283185307179586  <--- NB
n_atan2(-0, +1) = +0
n_atan2(+0, +1) = +0
n_atan2(+Z, +1) = +0

n_atan2(+1, +Z) = +1.570796326794897
n_atan2(+1, +0) = +1.570796326794897
n_atan2(+1, -0) = +1.570796326794897
n_atan2(+1, -Z) = +1.570796326794897

n_atan2(+Z, -1) = +3.141592653589793
n_atan2(+0, -1) = +3.141592653589793
n_atan2(-0, -1) = -3.141592653589793  <--- NB !!!
n_atan2(-Z, -1) = +3.141592653589793

n_atan2(-1, -Z) = +4.712388980384690
n_atan2(-1, -0) = +4.712388980384690
n_atan2(-1, +0) = +4.712388980384690
n_atan2(-1, +Z) = +4.712388980384690


f_normalized_atan2 =
    function(a, b) {
        select(
            a,
            atan2(a, b) + tau,
            select(b, pi, 0),
            atan2(a, b)
        )
    }

The results for f_normalized_atan2() are all in the half-open interval [+0,
+tau)

f_normalized_atan2(-Z, -1) = +3.141592653589793
f_normalized_atan2(-0, -1) = +3.141592653589793
f_normalized_atan2(+0, -1) = +3.141592653589793
f_normalized_atan2(+Z, -1) = +3.141592653589793

f_normalized_atan2(-Z, +1) = +6.283185307179586  <--- NB
f_normalized_atan2(-0, +1) = +0
f_normalized_atan2(+0, +1) = +0
f_normalized_atan2(+Z, +1) = +0

f_normalized_atan2(+1, -Z) = +1.570796326794897
f_normalized_atan2(+1, -0) = +1.570796326794897
f_normalized_atan2(+1, +0) = +1.570796326794897
f_normalized_atan2(+1, +Z) = +1.570796326794897

f_normalized_atan2(-1, -Z) = +4.712388980384690
f_normalized_atan2(-1, -0) = +4.712388980384690
f_normalized_atan2(-1, +0) = +4.712388980384690
f_normalized_atan2(-1, +Z) = +4.712388980384690


Here the functions are given invalid arguments:

Atan2 =
    function(a, b) {
        atan2(a, b)
    }

Atan2(-0, -0) = -3.141592653589793
Atan2(-0, +0) = -0
Atan2(+0, +0) = +0
Atan2(+0, -0) = +3.141592653589793


Atan2_Fn =
    function(a, b) {
        mod(atan2(a, b) + tau, tau)
    }

Atan2_Fn(+0, +0) = +0
Atan2_Fn(+0, -0) = +3.141592653589793
Atan2_Fn(-0, -0) = +3.141592653589793
Atan2_Fn(-0, +0) = +0


n_atan2 =
    function(a, b) {
        atan2(a, b) + select(a, tau, 0)
    }

n_atan2(+0, +0) = +0
n_atan2(+0, -0) = +pi
n_atan2(-0, -0) = -pi  <--- NB !!!
n_atan2(-0, +0) = +0


f_normalized_atan2 =
    function(a, b) {
        select(
            a,
            atan2(a, b) + tau,
            select(b, pi, 0),
            atan2(a, b)
        )
    }

f_normalized_atan2(+0, +0) = +0
f_normalized_atan2(-0, +0) = +0
f_normalized_atan2(-0, -0) = +0
f_normalized_atan2(+0, -0) = +0


When looking at the results from both the valid and invalid arguments, it seems
to me that POV-Ray's built in atan2() gives the most consistent results,
followed by Atan2_Fn().

--
Tor Olav
http://subcube.com
https://github.com/t-o-k


Post a reply to this message

From: Chris R
Subject: Re: Helical SDF for Isosurfaces
Date: 27 Dec 2024 09:30:00
Message: <web.676eb94a4a98c6d6a40969eb5cc1b6e@news.povray.org>
"Tor Olav Kristensen" <tor### [at] TOBEREMOVEDgmailcom> wrote:
> Below are the results of some atan2-tests I just did.
>
> Some constants:
>
>   pi/2 = 1.570796326794897
>   pi   = 3.141592653589793
> 3*pi/2 = 4.712388980384690
> 2*pi   = 6.283185307179586
>
> tau = 2*pi
>
> Z = 1e-100
>
>
> Here the functions are given valid arguments:
>
> The results for atan2() are all in the closed interval [-pi, +pi]
>
> atan2(-0, -1) = -3.141592653589793
> atan2(-Z, -1) = -3.141592653589793
>
> atan2(-1, -Z) = -1.570796326794897
> atan2(-1, -0) = -1.570796326794897
> atan2(-1, +0) = -1.570796326794897
> atan2(-1, +Z) = -1.570796326794897
>
> atan2(-Z, +1) = -0
> atan2(-0, +1) = -0
>
> atan2(+0, +1) = +0
> atan2(+Z, +1) = +0
>
> atan2(+1, +Z) = +1.570796326794897
> atan2(+1, +0) = +1.570796326794897
> atan2(+1, -0) = +1.570796326794897
> atan2(+1, -Z) = +1.570796326794897
>
> atan2(+Z, -1) = +3.141592653589793
> atan2(+0, -1) = +3.141592653589793
>
>
> Atan2_Fn =
>     function(a, b) {
>         mod(atan2(a, b) + tau, tau)
>     }
>
> The results for Atan2_Fn() are all in the half-open interval [+0, +tau)
>
> Atan2_Fn(-Z, +1) = +0
> Atan2_Fn(-0, +1) = +0
> Atan2_Fn(+0, +1) = +0
> Atan2_Fn(+Z, +1) = +0
>
> Atan2_Fn(+1, +Z) = +1.570796326794897
> Atan2_Fn(+1, +0) = +1.570796326794897
> Atan2_Fn(+1, -0) = +1.570796326794897
> Atan2_Fn(+1, -Z) = +1.570796326794897
>
> Atan2_Fn(+Z, -1) = +3.141592653589793
> Atan2_Fn(+0, -1) = +3.141592653589793
> Atan2_Fn(-0, -1) = +3.141592653589793
> Atan2_Fn(-Z, -1) = +3.141592653589793
>
> Atan2_Fn(-1, -Z) = +4.712388980384690
> Atan2_Fn(-1, -0) = +4.712388980384690
> Atan2_Fn(-1, +0) = +4.712388980384690
> Atan2_Fn(-1, +Z) = +4.712388980384690
>
>
> n_atan2 =
>     function(a, b) {
>         atan2(a, b) + select(a, tau, 0)
>     }
>
> The results for n_atan2() should all be in the half-open interval [+0, +tau)
>
> n_atan2(-Z, +1) = +6.283185307179586  <--- NB
> n_atan2(-0, +1) = +0
> n_atan2(+0, +1) = +0
> n_atan2(+Z, +1) = +0
>
> n_atan2(+1, +Z) = +1.570796326794897
> n_atan2(+1, +0) = +1.570796326794897
> n_atan2(+1, -0) = +1.570796326794897
> n_atan2(+1, -Z) = +1.570796326794897
>
> n_atan2(+Z, -1) = +3.141592653589793
> n_atan2(+0, -1) = +3.141592653589793
> n_atan2(-0, -1) = -3.141592653589793  <--- NB !!!
> n_atan2(-Z, -1) = +3.141592653589793
>
> n_atan2(-1, -Z) = +4.712388980384690
> n_atan2(-1, -0) = +4.712388980384690
> n_atan2(-1, +0) = +4.712388980384690
> n_atan2(-1, +Z) = +4.712388980384690
>
>
> f_normalized_atan2 =
>     function(a, b) {
>         select(
>             a,
>             atan2(a, b) + tau,
>             select(b, pi, 0),
>             atan2(a, b)
>         )
>     }
>
> The results for f_normalized_atan2() are all in the half-open interval [+0,
> +tau)
>
> f_normalized_atan2(-Z, -1) = +3.141592653589793
> f_normalized_atan2(-0, -1) = +3.141592653589793
> f_normalized_atan2(+0, -1) = +3.141592653589793
> f_normalized_atan2(+Z, -1) = +3.141592653589793
>
> f_normalized_atan2(-Z, +1) = +6.283185307179586  <--- NB
> f_normalized_atan2(-0, +1) = +0
> f_normalized_atan2(+0, +1) = +0
> f_normalized_atan2(+Z, +1) = +0
>
> f_normalized_atan2(+1, -Z) = +1.570796326794897
> f_normalized_atan2(+1, -0) = +1.570796326794897
> f_normalized_atan2(+1, +0) = +1.570796326794897
> f_normalized_atan2(+1, +Z) = +1.570796326794897
>
> f_normalized_atan2(-1, -Z) = +4.712388980384690
> f_normalized_atan2(-1, -0) = +4.712388980384690
> f_normalized_atan2(-1, +0) = +4.712388980384690
> f_normalized_atan2(-1, +Z) = +4.712388980384690
>
>
> Here the functions are given invalid arguments:
>
> Atan2 =
>     function(a, b) {
>         atan2(a, b)
>     }
>
> Atan2(-0, -0) = -3.141592653589793
> Atan2(-0, +0) = -0
> Atan2(+0, +0) = +0
> Atan2(+0, -0) = +3.141592653589793
>
>
> Atan2_Fn =
>     function(a, b) {
>         mod(atan2(a, b) + tau, tau)
>     }
>
> Atan2_Fn(+0, +0) = +0
> Atan2_Fn(+0, -0) = +3.141592653589793
> Atan2_Fn(-0, -0) = +3.141592653589793
> Atan2_Fn(-0, +0) = +0
>
>
> n_atan2 =
>     function(a, b) {
>         atan2(a, b) + select(a, tau, 0)
>     }
>
> n_atan2(+0, +0) = +0
> n_atan2(+0, -0) = +pi
> n_atan2(-0, -0) = -pi  <--- NB !!!
> n_atan2(-0, +0) = +0
>
>
> f_normalized_atan2 =
>     function(a, b) {
>         select(
>             a,
>             atan2(a, b) + tau,
>             select(b, pi, 0),
>             atan2(a, b)
>         )
>     }
>
> f_normalized_atan2(+0, +0) = +0
> f_normalized_atan2(-0, +0) = +0
> f_normalized_atan2(-0, -0) = +0
> f_normalized_atan2(+0, -0) = +0
>
>
> When looking at the results from both the valid and invalid arguments, it seems
> to me that POV-Ray's built in atan2() gives the most consistent results,
> followed by Atan2_Fn().
>
> --
> Tor Olav
> http://subcube.com
> https://github.com/t-o-k

Nice analysis of the various options!

I have adopted your updated f_normalized_atan2, which I find works well with my
isosurfaces.  Others may have different expectations and use a different
implementation.

My question would be, (and I should look at the pov code at some point to
check), when an isosurface is being evaluated, are there cases where -0 is
supplied to the isosurface function?

-- Chris R


Post a reply to this message

From: William F Pokorny
Subject: Re: Helical SDF for Isosurfaces
Date: 28 Dec 2024 06:32:04
Message: <676fe1b4$1@news.povray.org>
On 12/27/24 09:27, Chris R wrote:
> My question would be, (and I should look at the pov code at some point to
> check), when an isosurface is being evaluated, are there cases where -0 is
> supplied to the isosurface function?

Might be. It depends on the function(s) being used in the isosurface and 
what x,y,z values you might see given, environmental-usage of the 
isosurface. Also, potentially, on the build compile for the executable.

Using the f_boom() inbuilt in the yuqk fork:

//--- Should be the f_sphere() version of this will run in v3.8 beta 2
#version 3.8;
#include "functions.inc"
isosurface {
     function { f_boom(x/-2,y,z,0/-2,0,0) }
   //function { f_sphere(x/-2,y,z-1,0.1) }
     contained_by { box { -2.0,2.0 } }
     threshold 0
     accuracy 0.0005
     max_gradient 1.1
     finish { emission 1.0 }
}
//---

f_boom
1(x) -> -0,
2(y) -> 0,
3(z) -> 0,
4(0) -> -0,
5(1) -> 0,
6(2) -> 0

Bill P.


Post a reply to this message

<<< Previous 10 Messages Goto Initial 10 Messages

Copyright 2003-2023 Persistence of Vision Raytracer Pty. Ltd.