|
|
I haven't gotten to play with Pov much at all for a long time. :-(
I wanted to play with photons, so I added a shiny box. :-)
#default {finish {ambient 0}}
// global_settings + photons added by William
global_settings {
photons {
count 10000
autostop 0
jitter 0
}
}
// end global_settings
// Begin additions by Yadgar
#declare s1=seed(1979);
#declare Silver_Ball=
sphere
{
0, 0.04
texture
{
pigment { color rgb 0.75 }
finish { brilliance 0.7 diffuse 1 reflection 0.5 specular 0.8
roughness 0.001 }
}
}
// End additions by Yadgar
camera {
location <-5,10,-20>
look_at 0
}
light_source {
<1,1,-1>*10 color rgb 1
spotlight point_at y*3 radius 15 falloff 25
area_light x*2,y*2,25,25 circular orient adaptive 0
photons {
reflection on
}
}
plane {
y, 0
pigment {checker color rgb 2, color rgb 0.5 scale 2}
finish {specular 1 reflection 1/3}
}
#macro rubber(col)
texture {
pigment {color col}
finish {specular 1/4}
normal {bumps 1/50 scale 1/100}
}
#end
sphere {<0,3,0>, 3 rubber(rgb x)}
sphere {<4,2,-3>, 2 rubber(rgb x+y)}
sphere {<-2,1,-4>, 1 rubber(rgb z)}
// Box added by William
box {
<0, 0, 0>
<1, 1, 1>
rotate y * 45
translate z * -4
texture
{
pigment { color rgb 0.75 }
finish {
brilliance 0.75
diffuse 0.75
reflection 0.75
specular 0.75
roughness 0.001
}
}
photons {
target
reflection on
collect on
}
}
// End of William's box
// Begin additions by Yadgar
#declare n=0;
#while (n<1800)
#declare r1=rand(s1)*360;
#declare r2=asin(rand(s1)*2-1);
object { Silver_Ball translate <0, 3, 0>+3*<sin(r1*(pi/180))*cos(r2),
sin(r2), cos(r1*(pi/180))*cos(r2)> }
#declare n=n+1;
#end
#declare n=0;
#while (n<800)
#declare r1=rand(s1)*360;
#declare r2=asin(rand(s1)*2-1);
object { Silver_Ball translate <4, 2,
-3>+2*<sin(r1*(pi/180))*cos(r2), sin(r2), cos(r1*(pi/180))*cos(r2)> }
#declare n=n+1;
#end
#declare n=0;
#while (n<200)
#declare r1=rand(s1)*360;
#declare r2=asin(rand(s1)*2-1);
object { Silver_Ball translate <-2, 1, -4>+<sin(r1*(pi/180))*cos(r2),
sin(r2), cos(r1*(pi/180))*cos(r2)> }
#declare n=n+1;
#end
// End additions by Yadgar
Post a reply to this message
Attachments:
Download 'pingpong.png' (71 KB)
Preview of image 'pingpong.png'
|
|