|
|
"Trevor G Quayle" <Tin### [at] hotmailcom> wrote:
> Somewhere on average between 200-600 lights for each image.
>
> The dome is basically a sphere subdivied into triangles (see image, sd level
> 3,4,5).
>
> The actual number of lights depends on the level of subdivision and the
> light threshold. Not every point of the dome has a light, as render times
> would get horrendous for little increase.
>
>
Right. Believe me, I'm a big Fuller fan. I just didn't know of what order
the dome was. How few lights can be used before it becomes an
unintelligible mess? Obviously a full geodesic would only be the most
efficent distribution if the image was one color, which, of course, it is
not. That would be silly. Rather than simple threshold the lights (I assume
by that you mean it only places a light if the corresponding pixel(s)
is(are) bright enough), perhaps there is a better way - that is still a
relatively arbitrarily even distribution. I am thinking perhaps there is a
way to to a little processing and actually increase the density of the
lights in areas of greater brightness, thus reducing the need for large
numbers. Of course, then the geodesic distribution is useless, but some
sort of iterative process might do it- divide the image, proportion the
number of lights per division based on the average brightness, and repeat
for each division until each division has only one light. That would allow
for an exact number of lights to be used, and use them more effectively.
Oi. I don't have time for a new project now, but you've got me intrigued. I
don't know much about image processing with pov. Now I'll end up spending
my winter break learning that.
-s
5TF!
Post a reply to this message
|
|