POV-Ray : Newsgroups : povray.general : Simulating curvature of the Earth Server Time
15 May 2024 16:13:03 EDT (-0400)
  Simulating curvature of the Earth (Message 1 to 5 of 5)  
From: Mike Horvath
Subject: Simulating curvature of the Earth
Date: 20 Aug 2015 16:24:21
Message: <55d63775@news.povray.org>
I have a town model with the horizon in the background and a high camera 
angle. However the horizon is simply an infinite plane. Is there a way 
to simulate the Earth's curvature? Can I use an actual sphere, or is 
povray not precise enough to do that?


Mike


Post a reply to this message

From: Alain
Subject: Re: Simulating curvature of the Earth
Date: 20 Aug 2015 19:14:15
Message: <55d65f47$1@news.povray.org>
Le 15-08-20 16:24, Mike Horvath a écrit :
> I have a town model with the horizon in the background and a high camera
> angle. However the horizon is simply an infinite plane. Is there a way
> to simulate the Earth's curvature? Can I use an actual sphere, or is
> povray not precise enough to do that?
>
>
> Mike

Quick and dirty: Use a large disk for your ground. In some cases, this 
may be good enough.

Use a large flattened sephere. This can prevent, or at least reduce, 
some problems with large scale differences between objects.

Use an actual sphere of the appropriate radius translated down by it's 
radius so that the area of interest can be centered around the origin. 
In this case, having milimetric scalled objects in your scene can cause 
some problems: the ground could disapears or have holes, or some small 
objects can go missing, get shifted around or have serious shading isues.

Hard core: Compile your version using tripple or quadruple precision FP 
numbers. Reduce the epsilon value accordingly to the increased 
presision, and very probably have the render time sky rocket.


Alain


Post a reply to this message

From: Mike Horvath
Subject: Re: Simulating curvature of the Earth
Date: 20 Aug 2015 20:02:52
Message: <55d66aac$1@news.povray.org>
On 8/20/2015 7:15 PM, Alain wrote:
> Quick and dirty: Use a large disk for your ground. In some cases, this
> may be good enough.
>
> Use a large flattened sephere. This can prevent, or at least reduce,
> some problems with large scale differences between objects.
>
> Use an actual sphere of the appropriate radius translated down by it's
> radius so that the area of interest can be centered around the origin.
> In this case, having milimetric scalled objects in your scene can cause
> some problems: the ground could disapears or have holes, or some small
> objects can go missing, get shifted around or have serious shading isues.
>
> Hard core: Compile your version using tripple or quadruple precision FP
> numbers. Reduce the epsilon value accordingly to the increased
> presision, and very probably have the render time sky rocket.
>
>
> Alain


Can you think of a good equation to calculate how big the disc needs to 
be? (Maybe overkill.)

Mike


Post a reply to this message

From: Mike Horvath
Subject: Re: Simulating curvature of the Earth
Date: 20 Aug 2015 20:55:38
Message: <55d6770a$1@news.povray.org>
On 8/20/2015 8:03 PM, Mike Horvath wrote:
> Can you think of a good equation to calculate how big the disc needs to
> be? (Maybe overkill.)
>
> Mike

Actually, that's not going to work because I am using a checker pigment 
on the plane and it will look funny on the disc.


Post a reply to this message

From: clipka
Subject: Re: Simulating curvature of the Earth
Date: 20 Aug 2015 22:47:14
Message: <55d69132$1@news.povray.org>
Am 20.08.2015 um 22:24 schrieb Mike Horvath:
> I have a town model with the horizon in the background and a high camera
> angle. However the horizon is simply an infinite plane. Is there a way
> to simulate the Earth's curvature? Can I use an actual sphere, or is
> povray not precise enough to do that?

As long as we're talking about reasonably large scenes (the whole scene
- sans earth - measuring meters and upward), just go ahead with the huge
sphere approach.


Make sure to keep the coordinate origin near the camera. Some people
have modeled entire solar systems with the sun at the center, and were
surprised when "portraits" of Deimos (or was it Phobos? one of the Mars'
moons anyway) showed artifacts. This is because absolute precision drops
as the absolute magnitude of coordinate values increases.


Post a reply to this message

Copyright 2003-2023 Persistence of Vision Raytracer Pty. Ltd.