POV-Ray : Newsgroups : povray.general : Light fading Server Time
15 Nov 2024 07:14:10 EST (-0500)
  Light fading (Message 1 to 4 of 4)  
From: Dolan
Subject: Light fading
Date: 18 Feb 1999 19:02:07
Message: <36cca9ff.0@news.povray.org>
I'm wondering -- which value of fade_power is physically accurate?


Post a reply to this message

From: Mark Palmquist
Subject: Re: Light fading
Date: 18 Feb 1999 19:28:11
Message: <36CCB065.8308F581@earthlink.net>
I believe that fade_power = 2 is "correct", light is 1/4 power at double
the distance.  Others will know for sure.

Dolan wrote:

> I'm wondering -- which value of fade_power is physically accurate?


Post a reply to this message

From: Ken
Subject: Re: Light fading
Date: 18 Feb 1999 19:39:04
Message: <36CCB243.C2C7A94F@pacbell.net>
Dolan wrote:
> 
> I'm wondering -- which value of fade_power is physically accurate?

  Since electromagnetic waves like light spread out evenly from their source
the intensity or strength is inversely proportional to the square of the
distance of the wave from it's source. In other words if the distance
travelled is 3, the intensity will be 1/9 the intensity when the distance
is 1.
 Comparing this formula to that listed in the docs it is safe to presume
that you need a value of fade distance_1 and fade_power 1, for a distance
of 1, for Pov to apply the law in a physically correct behaviour.
  Keep in mind when you area applying this that you understand the model.
This applies to an open candle flame that has nothing acting upon it to
reflect light back into itself. Most common light sources don't adhere to
the inverse square law because of filament properties, reflectors,
and shading devices. This leaves a little room for artistic license if
needed.

-- 
Ken Tyler

mailto://tylereng@pacbell.net


Post a reply to this message

From: Nathan Kopp
Subject: Re: Light fading
Date: 19 Feb 1999 00:26:51
Message: <36CCF641.33288B8F@Kopp.com>
Dolan wrote:
> 
> I'm wondering -- which value of fade_power is physically accurate?

None are.

Real light attenuation is proportional to 
  1/(d^2)

The closest you can get with POV is fade_power 2 (and 
fade_distance 1), which is proportional to

1/( (1+d/(fade_distance))^fade_power )

or

1/( (1+d)^2 )

As d gets larger, this approximation looks more and more like the
real thing.

-Nathan


Post a reply to this message

Copyright 2003-2023 Persistence of Vision Raytracer Pty. Ltd.