|
|
Le 16/05/2017 à 13:41, Bald Eagle a écrit :
> I didn't have as much time as I would have liked to explore this,
> but after fiddling with the Dupin cyclide in both isosurface (implicit) and
> parametric form, I found the parameters to be highly unintuitive, the desired
> shape very difficult to achieve and control, and the constraints on the
> parameters too complex to be easily implemented.
>
> I hadn't gotten around to unraveling the implicit equation to fit the syntax for
> a polynomial.
I asked the other Internets about that, they had a round tuit left so I
got a nice answer.
> It is, however, SLLLLllllllllllooooooooooowwwwwwww.
It is not slow with a polynomial.
True Duplin Cyclide !
#version 3.7;
global_settings{ assumed_gamma 1.0}
#default { finish { ambient 0.2 diffuse 0.8 } }
#declare HEIGHT=9;
camera { orthographic
location <00,00,30>
up HEIGHT*y
right HEIGHT*image_width/image_height*x
look_at 0
rotate clock*x*90
}
light_source { <20,30,40>,1 }
#declare TC=texture { pigment { color srgb <1,1,1> } };
sphere { 0, 1 texture { TC }}
#declare A=3;
#declare B=A*0.98;
#declare C=sqrt(A*A-B*B);
#declare D=1.3*C;
#declare T=texture { pigment { color srgb <1,0.75,0.5> } };
polynomial{
4,
/* expand (x^2+y^2+z^2+b^2-d^2)^2-4*(a*x-c*d)^2-4*b^2*y^2=0 */
/* -4 a^2 x^2 + 2 b^2 x^2 - 2 d^2 x^2
+ 8 a c d x
+ b^4 - 2 b^2 d^2 - 4 c^2 d^2 + d^4
- 2 b^2 y^2 - 2 d^2 y^2
+ 2 b^2 z^2 - 2 d^2 z^2
+ 2 x^2 y^2
+ 2 x^2 z^2
+ 2 y^2 z^2
+ x^4
+ y^4
+ z^4
= 0
*/
xyz(2,0,0):(-4*A*A)+(2*B*B)-(2*D*D),
xyz(1,0,0):8*A*C*D,
xyz(0,0,0):(B*B*B*B)-(2*B*B*D*D)-(4*C*C*D*D)+(D*D*D*D),
xyz(0,2,0):(-2*B*B)-(2*D*D),
xyz(0,0,2):(2*B*B)-(2*D*D),
xyz(2,2,0):2,
xyz(2,0,2):2,
xyz(0,2,2):2,
xyz(4,0,0):1,
xyz(0,4,0):1,
xyz(0,0,4):1
texture { T }}
Post a reply to this message
Attachments:
Download 'cyclide4.png' (15 KB)
Download 'cyclide3.png' (39 KB)
Download 'cyclide2.png' (59 KB)
Download 'cyclide1.png' (73 KB)
Download 'cyclide0.png' (80 KB)
Preview of image 'cyclide4.png'
Preview of image 'cyclide3.png'
Preview of image 'cyclide2.png'
Preview of image 'cyclide1.png'
Preview of image 'cyclide0.png'
|
|