|
|
The "flower power" thread on povray-general wandered into the area of
"Starr Roses"
http://news.povray.org/povray.general/33515/
Mike Williams came up with a very nice "dahlia" based on one method of
extending this object to 3-D:
http://news.povray.org/povray.general/33515/?mtop=235716&moff=18
But I'm still fixated on "spherical products" as a method of extending
2D parametric equations (see
http://news.povray.org/povray.binaries.images/32476/ ).
So, here is a spherical product of the quasi-polar Starr rose (with A =
10, B = 30, C = 30) and the polar function R = sin (10 T ).
(That is, in Ingo's param.inc ready form:
F1 = function(u,v) {(2 + sin(A*u)/2)*cos(u + sin(B*u)/C)*sin(10*v)*cos(v) }
F2 = function(u,v){sin(10*v)*sin(v)}
F3 = function(u,v) {(2 + sin(A*u)/2)*sin(u + sin(B*u)/C)*sin(10*v)*cos(v) }
object { Parametric(
F1, F2, F3,
<-0.0001, -0.0001>, <2*pi + 0.0001, 2*pi + 0.0001>,
200,200,"SomeFile.inc"
)
[insert object characteristics] } )
Other spherical products make likewise interesting flowers.
Dave Matthews
Post a reply to this message
Attachments:
Download 'starrrosesphereproduct01.jpg' (45 KB)
Preview of image 'starrrosesphereproduct01.jpg'
|
|