|
|
Yes, I think this is a better way to control the colors.
Thanks Mark.
Tor Olav
Mark James Lewin wrote:
>
> Tor,
> Have you tried 'average'? I have used this to achieve similar control as
your
> technique (though not so complicated). Here is how I do it...
>
> #declare F_Red = function{(sin(x)+sin(y)+sin(z)+3)/6}
> // Or any function between 0 and 1
>
> #declare F_Green =function{(cos(x)+cos(y)+cos(z)+3)/6}
> #declare F_Blue =function{(sin(-x)+sin(-y)+sin(-z)+3)/6}
>
> #declare P_Red =
> pigment
> {
> function{F_Red(x,y,z)}
> colour_map
> {
> [0 rgb <0,0,0>][1 rgb <3,0,0>]
> // Note the colour max is 3, not 1
> }
> }
>
> #declare P_Green =
> pigment
> {
> function{F_Green(x,y,z)}
> colour_map
> {
> [0 rgb <0,0,0>][1 rgb <0,3,0>]
> }
> }
>
> #declare P_Blue =
> pigment
> {
> function{F_Blue(x,y,z)}
> colour_map
> {
> [0 rgb <0,0,0>][1 rgb <0,0,3>]
> }
> }
>
> #declare P_Average =
> pigment
> {
> average
> pigment_map
> {
> [1 P_Red]
> [1 P_Green]
> [1 P_Blue]
> }
> }
>
> Then you have a pigment with control over rgb channels without semi transperent
layers.
Post a reply to this message
|
|