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Abstract

This paper presents a new model of spline curves and surfddes
main characteristic of this model is that it has been credted
scratch by using a kind of mathematical engineering procéssa
first step, a list of specifications was established. Thisgiisups
all the properties that a spline model should contain in ortte
appear intuitive to a non-mathematician end-user. In a secgep,
a new family of blending functions was derived, trying tdilfuhs
many items as possible of the previous list. Finally, thereleg

of freedom offered by the model have been reduced to prowige o

shape parameters that have a visual interpretation on theest
The resulting model includes many classical propertiefsiscaffine
and perspective invariance, convex hull, variation dintimw, local
controlandC? /G2 or C? /G° continuity. Butitalso includes original
features such as a continuum between B-splines and CaRoofl-
splines, or the ability to define approximation zones anerjplation
zones in the same curve or surface.

1 Introduction

Since the ground work in CAD during the late sixties, manjedént
models of splines have beenintroduced. One specific cleaistat of
CAD is that the mathematical models developped by reseexeine
later manipulated by non-mathematician end users (desigaehi-
tects, animators). Therefore, rather than its completéherastical
properties, a major criterion for the evaluation of a splinedel may
be the ability to understand intuitively the degrees of diea that
it provides. A full study of existing spline models on thattxzular
point lies not within the scope of this short introductiont ket us just
take one or two examples.

The popular NURBS modelis a good example in which the useichas

be familiar with the mathematical structure to obtain bestits. For
instance, the manipulation of the knot vector is really ctampfirst
the geometrical effects generated by these manipulatiansardly
be predicted, second these effects are not robust becatisrfkinot
manipulations may move them along the curve, and third tfeetsf
are propagated along the whole isoparametric curves inase of
surfaces. Even the manipulation of the weights may sometioee
confusing: for instance, the modifications of two adjacesights are
mutually cancelled [11].

The model that accounts the most for the ergonomics of thépuan
lation is undoubtedly thg-spline model [1] which includes intuitive
shape parameters (tension and bias). Yet, if the behavibtireo
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model is really natural when using global tension and bias,ex-
tended model [2] with local parameters is less convincinginty
because these parameters are not directly related to thebooints.
Moreover, theC'® /G? continuity of thes-splines is lost by interpola-
tion, this makes them inadequate for many applications [9].

This paper proposes a new spline model that has been dedigned
make user manipulations as intuitive as possible. Its féatian is
presented in four steps: Section 2 presents the list of Bpatidbns
for the new model, Section 3 explains the principle and thgida
formulation, Section 4 derives a more complete expressicinding

an original shape parameter, finally, Section 5 details theegal
formulation.

2 Background
2.1 Definition

In their most general definition, splines can be considesea math-
ematical model that associates a continuous representatiove or
surface) with a discrete set of points of an affine space (lys&t

or R). In the case of curves, this definition can be expressed as
follows: let P, € R® with (k = 0..n) be a set of points callezbntrol
points and letFy, : [0,1] — R (with & = 0..n) be a set of functions
calledblending functionsthe spline curve generated by the couples
(P, Fr) is the curveC defined by the parametric equation:

vt e[0,1] C(¢) = Zn: Fi(t) Pk (1)

According to the shape of the blending functions, the résyltturve
may eitherapproximatethe control points ointerpolatethem. Fig-
ure 1 and Figure 2 illustrate this distinction by showing telassical
examples of spline curves (cubic uniform B-splines [12] igufe 1,
cubic Catmull-Rom [6] in Figure 2). Each figure is divided imct
parts, the top shows the control lattice and the curve, thteimshows
the plots of the blending functions. The same graphical éanrk
will be used throughout the paper.

2.2 Properties

The family of curves that obeys Equation 1 is extremely vast a
thus many of its members are likely to be of little interegt. fact,
the work done over the years in the literature has exhibitethym
properties that a spline model should include to becomeut éaf
geometric modelling. In a recent survey, we have shown théitese
properties can be obtained by imposing specific constraintthe
blending functions [3].
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Figure 1: Uniform B-spline curve
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Figure 2: Catmull-Rom spline curve

Using that result, we are going to list now all the properfeeswell as
the corresponding constraints on the blending functidres)we have
found vital or simply desirable to include in our user-otish spline
model:

¢ Affine invariance: The affine transformation of a spline should be
obtained by applying the transformation to its control p®inThis is
provided by thenormality constrairtt

vt € [0,1] Zn: Fr(t)=1 (2)

e Convex hull: The spline should be entirely contained in the convex
hull of its control lattice. This is provided by the normglitonstraint
combined with thepositivity constrairtt

Vk=0.n Vt€l0,1] Fy(t)>0

(3)

¢ Variation diminution : The number of intersections between the
spline and a plane (or aline, for 2D splines) should be at exqsal to
the number of intersections between the plane and the ddaitioe,
which means that the spline should have less oscillatioas its
control lattice. This property is provided by combining tih@mality,
the positivity with theregularity constraint

Vk=0.n 3T €[0,1] / (4)

Vi<Ty Fut)>0 and Yk =k+1l.n Fu(t) < Fi(t)
Vt>T, Fut) <0 and VK =0.k—1 Fu(t) < Fi(t)

This constraint may appear complex at a first glance, butnpbi
says that the blending functions are bell-shaped and tlefumctions
cannot cross each other in the zone where they are simulialyeo
increasing or decreasing.

e Local control: Each control point should only influence the shape
of the spline in a restricted zone. This property is provithgdhe
locality constraint

Yk =0.n (T, TF)e[0,1]7 /

Yt < Ty Fu(t)=0 and VYt>TF Fi(t)=0
A spline may offer more or less local control according to éxéent
of the influence of a given control point. To quantify this asp the
notion of L? locality [3] can be used: a spline curve (resp. surface)
has gotZ? locality when each control point influencessegments
(resp. patches) at most.

e Smooth shapes/Sharp shapesThe spline model should allow
both smooth shapes and sharp shapes and more preciselygmixin
smooth zones and sharp ones in the same curve. It is well ktiatn
parametric continuity does not provided any informatiortlemshape

of the curve; therefore one has to use geometric contingityooth
shapes ar&” at least, sharp shapes at€ at most. On the other
hand, parametric continuity is needed to provide smoothandh
animation; therefore the model should also provifecontinuity.

e Intuitive shape parameters In addition to the control points, the
spline should also provide other degrees of freedom, uscalled
shape parameter8ut to be usable by a non-mathematician end user,
the role of these parameters should be as intuitive as ges#itmong

all the shape parameters (knots, weights, tension, biagiue) that

we can find in existing spline models, only tleeal tension effect
(which allows the user to pull the curve locally toward oneeveral
control points) appears totally intuitive.

e Existence of refinement algorithms The spline model should
allow the use of refinement or subdivision techniques whiefpaw-
erful tools that increase the number of degrees of freedom $pline
(control points or shape parameters) without modifyinghape.

¢ Representation of conics The spline model should be able to
represent conic sections, and consequently a large sereésand
surfaces (circles, ellipses, spheres, cylinders, susfateevolution,
etc) that are intensively used in CAD. The exact represiemtatf
conics is one reason for the popularity of the NURBS model [3]
Nevertheless, having only a close approximation (up togkelution

of the display, for instance) is sufficient for most applicas.

¢ Approximation/Interpolation : For some applications or some
users, approximation splines are preferable, whereastfars, in-
terpolation splines are imperative. For that reason, thdehshould
provide approximation splines and interpolation splirest iunified
formulation. Among the existing models, only the generain@al-
Rom model [6] includes such a feature; but we would like to get
a step further by allowing the creation of approximation esand
interpolation zones in the same curve.

In the following sections, we describe a new spline modetwhvas
designed to fulfill as many items as possible of the previ@is At
the current stage in this development, all items but onegitistence
of refinement techniques) are fulfilled by the model. The iy
of including the last item will be discussed in the conclasio

3 Basic X-Splines

(5)

3.1 Principle

Building a new spline model from scratch implies defining e figm-
ily of blending functions. Among the constraints that haeeilisted



in Section 2, the most difficult to fulfill is the normality cefmaint.
Indeed, finding a family of functions} (¢) that sum to one whatever

the value of is a tricky task. For that reason, we have chosento build

our blending functions independently of the normality deaist, and
then to apply in a final step, a normalization process whiptages
Fk(t) by Fk(t):

__ B
im0 1)

Thus, the actual blending functiofs, (¢) will be normalized rational
polynomials which, as a side-effect, adds the projectivailiance
property to the resulting curves.

By combining the different properties recalled in Sectiom2 can
establish that for a normal, positive, regular and locaingpleach
blending functionF (¢) is bell-shaped, starts to grow at a given value
T, , reaches its unique maximum at a second vdluand drops to
zero at a third valudyt (see Figure 3). In classical spline models,

vt €[0,1] Fai(t) (6)

Fy(t) is defined by a piecewise polynomial or a rational piecewise

polynomial, composed of as many segments as consecutireaf
betweeril},~ andler (e.g. four segments with cubic B-splines).
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Figure 3: Configuration of the blending functions

The driving idea of the new model that we propose here is thaie
ing: the non-null part of the blending function should be pased
of only two segments The first, calledF (), is defined between
T, andTy; the second, callel;" (¢), is defined betweefi, andT} .

In order to make this idea clearer, let us take the case ofiaesipl
which each control poinf%; influences four segments of the curve

(i.e. L* locality). This is a usual case (shared by every classical

model of cubic splines, for instance) and is often consid¢2¢ as
the best trade-off between low degree splines on one haridrjae
closely related to the control lattice and thus can hardbyiate very
smooth shapes) and high degree splines on the other harzh(adm
hardly provide very sharp shapes).

By definition, for anL* spline, each blending function is non-null
over four consecutive intervals of the knot vectdr; (t) becomes
non-null at knott;_», is maximal at knot; and becomes null again
at knotty1» (the knots are shown on the top of Figure 3). Bgt)

is composed only of two segments, it depends onlyon, ¢, and

take the case of a uniform knot vector:

VE=1.n tp—tpx—1=A
If we apply the following reparametrization to the curve,

t—tp—2  t—tko
2A

u(t) =

= = 7

by — k2 (7)
we are assured that = 0 at knot¢,_. where Fj(t) starts to grow
andu = 1 at knott;, whereF}(¢) reaches its maximum. Therefore,
we have to find a polynomigl(u) defined on the rang@, 1] which
can be linked to the left part dfy (¢) by:

/(557)

Because we want &2 continuous curve, the following constraints
for the functionf(u) can be immediately derived:

£ ()

(8)

fo=0 f(o=0 f0)=0 (9)
As the maximum of the blending function is reached:at 1, its
first derivative is necessarily null. Moreover, we can $ét) = 1
because the normalization step will reduce the maximunstexact
value anyway. Finally, the second derivativaiat 1 can be setto a
given constant (we call this constan2p to simplify the formulation):
fm=1 =0 f1)=-2p (10)

Thus we have derived a system of six constraints. As we séareh
polynomial solution, it will necessarily be quintic, in @dto get six
degrees of freedom. By matching the constraints and thdicieets
of the polynomial, we obtain:

fo(u) =u® (10— p+ (2p — 15) u + (6 — p) u®) (11)
Moreover, the property of regularity requires an incregdimction
on the rangg0, 1] and thus a positive derivative. Therefore there is
an additional condition op:

0<p<10

The function f,(u) (see Figure 4) provides the left part &%.(¢)
according to Equation 8. By reversing the direction and thgiro of
the reparametrization, the right partBf(¢) is obtained similarly:

Ff () = fe (LJ;A_ t) (12)

The two functionsF,” and £} join at knott, with C* continuity
(Fi(tx) = 0 and Fy/(tx) = —p/2A%?) which means that the global
blending functionFy(¢), and therefore the whole curvg(t), areC*

tr+2. Thus there is a kind of alternation in the way the knots are ¢gntinuous.

taken into account (even points use even knots and odd psiatsdd
knots). Moreover, as we will see, the blending functidns.. and
Fi42 cross each other at knet and all the derivation of the model
is based on this crossing. For that reason, we have callechéw
model,cross-splinesor X-splines, for short.

3.2 Formulation

In fact, once the general principle has been establishedyabic for-
mulation of the new model can be derived quite naturally. ussfirst

In fact, we have also tried the case where the non-null padnsposed of only one
segment. But this makes the modelmuch more expensive (@8gational polynomials)
with no additional features.
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Figure 4: Functionf,(u) forp = 0,2,4,6,8, 10

Finally, we get the formulation for a segment of the cu€Vg) on
the parameter rangex+1, tx+2], defined by the four control points
Py, Pry1, Peyo, Prgs:

Ao(t) P + A1(t) Pryr + A2(t) Prgo + As(t) Prys

() = Ao() + A (1) + A2 () + A:(0)
(13)
Ao =1y (55) a0 =5 (H5)
an =15 (52)  Aw=15(52)

The process defined above has providgdiatic rational approxima-
tion spline modethat includes the properties of normality, positivity,
regularity, locality and_? continuity. Moreover, the curves contain
a degree of freedom € [0, 10] which allows a (slight) modification
of their shapes. It should be noticed that a very interestage is
obtained fop = 8. Indeed, after the normalization step, the blending
functions are very close to the cubic uniform B-splines &disnc-
tions (see Figure 6). It means that the resulting curves —-vam
basic X-splines— are almost identical to the uniform cubic B-splines
(compare Figure 5 and Figure 1).
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Figure 5: Basic X-spline curve
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Figure 6: Similarity of the cubic uniform B-splines and the basic
X-splines blending functions (fer= 8)

4 Extended X-Splines

4.1 Formulation

The degree of freedomin Equation 11 does not offer enough variety
in the shapes of the blending functions (see Figure 4) toigeanter-
esting effects on the resulting curves. Therefore, it appg@mewhat
useless in the formulation of the new model. In fact, theterise
of this degree of freedom will be hidden to the end user. As we w
see below, this parameteis needed to manage another parameter
that we are going to introduce now and which is the actualekegf
freedom accessible by the end user.

Among the items of our list of specificationgnsionand angular
shapeqG° continuity) can be included in our model by the same
derivation. Indeed, the basic idea which has led to the qunake
tension in the spline literature is to be able to strain theeor the
surface) in order to pull it toward the control lattice. Ad iimit, this
process forces the curve to interpolate one or several@qmints,
and due to the convex hull property, this interpolation wi#tate sharp
edges.

To bring the curve closer to a given part of the control lattione
has to increase the influence of the corresponding contrimitgo
A straightforward idea to realize this process is to add acifige
weighting coefficient to each control points. But, as we haealled

in Section 1, this solution (which is used in every classiatibnal

spline) does not work in a satisfying way, because the inflesof

neighbouring weights are mutually cancelled. Therefoeepropose
here an original solution to include the concept of tensidmich does
not contain the drawback of the existing models.

Toillustrate this new solution, let us take the blendinghionsFs, F5
andF; in Figure 3. We know thak’; reaches its maximum &i. But,
asF, andFy, are not null ats, the normalization process has set the
actual maximum tds /( F> + Fs + F4). Therefore, away to increase
this maximum, in order to bring the curve closer to the cdrpmint
P, isto decreasés(ts) andFy(ts).

We know that in the area of interedt; (respectivelyFy) decreases
(respectively increases) monotonically in the rafigets]. Thus, to
obtain smaller values for these functionstat one has to speed up
the decrease of the former and to slow down the increase ddttee
To realize these two operations symmetrically, we actyaligh the
crossing point ofF; and £, down toward the horizontal axis. For
that, we introduce a new degree of freedese [0, 1] at point Ps.
This parameter will be used, first to compute the vallfe(whereF
becomes null) by interpolation betwegnandis:

T;:t3—|—53(t4—t3):t3+53A

and second, to compute the vallig (where £, becomes non null)
by interpolation betweety andi,:

T4_:t3—|—53(t2—t3):t3—53A

In other words, it means thdt, (respectivelyFy) is null all over the
range[T;, t.] (respectively{t., T, ]). The same operation can be



done for eactk. The resulting value§l, , T, ) have to be replaced
in the reparametrization equations (Equation 8 and Equdt®) as
follows:

Hmzn(iﬁi) wmzn(ifl) (14)

te — T, te — T,

The two parts off%(¢t) still join at ¢, their first derivatives are still
null but their second derivatives are different:

_ —2p
F// t — I
K (TP

o D=
k

(15)

Here is the point where our paramegewill finally be used. Indeed,
in order to equal the left and right expressions, the onlgghp do
is to use a specific value fgr(notedpx_1) in F,~ and another one

(notedpx1) in F}F. Taking

Ztk—T_2 Ztk—T+2
Pr1 = % and pry1 = % (16)
gives
_ 4
Fl(t) = F(t) = N

which providesC? continuity but assures also that the paramaigrs

are in the rang0, 8] as needed to get the property of regularity and

to obtain the cubic B-splines as a limit case.

Therefore we can derive a new formulafiofor the segment of the
curveC(t)onthe rangé 1, tx+2] defined by the four control points
Py, Pry1, Peyo, Prgs:

Ao(t) P + A1(t) Pryr + A2(t) Prgo + As(t) Prys
2o(0) F A0 Aa(0) + As(0)

t— T,
forna (ﬁ)

+
f t—=T
Pr b1 _le-+1

C(t) =

(17)
A(t)=t>T}F 7 0

Aty=t>TH, 7 0

k+1
t—1,.
Ay =t<T7, ? 0 : f — k42
k42 Pr+41 tk+2 _ Tk+2
t—1,.
As()=t<T-, ? 0 : f - k43
( ) k+3 Pr+42 tk+3 _ Tk+3
Pk—1 = % (tr — le')2 Pk = % (trg1 — le-+1)2
2 — 2 _
P41 = F (tk+2 — Tk+2)2 Pk+42 = F (tk+3 - Tk+3)2

The expression of'(t) seems complex but in fact it can be imple-

mented very compactly and efficiently (12 lines of sourceecimdC

language).

So for the end user, aaxtended X-splinés totally defined by a
set of quadruple$zx, yx, zx, sx) with & = 0...n. All these de-
grees of freedom have a very simple interpretation. Thematars
(xx,yx, 2x) € R® are the coordinates of the control poiits. The

tx and therefore the curve is usually (whéa_,, P, and P4 are

not aligned) onlyG° at ;.. In other words, it means that, even if it is
alwaysC?, the model enables the creation of angular points or sharp
edges.

4.2 Examples

This section demonstrates the role of the paramgtéry showing its
influence on the resulting shapes. The basic formulatiomddfin

Section 3is a particular case of the extended one, wherar@hpeters
si are setto one. As we have seen, basic X-splines are almasitiale
to uniform cubic B-splines.

A first variant consists in setting, ands,, to zero in order to inter-
polate the end points of the control lattice and thus to enhbtter
control of the curve boundaries. The resulting curves — ttedm
extremal X-splines (see Figure 7)— are very close to thesatab
extremal cubic B-splines (also called non-periodic cubigdines).
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Figure 7: Extremal X-spline curve
S0 :0751 = 1,52 = 1,53 = 1,54 = 1,55 = 1756 =0

Let us now decrease the value of one parametefsay s;). By
comparing Figure 7 and Figure 8, one can see that the crogsing
of F, andF} at knott; has been pushed down.

R

i)

parametek; € [0, 1] symbolizes thelistance between the curve and
the control lattice whens, = 1, the curve passes relatively far away
from point Py; whens;, decreases, the curve comes closer and closer

to Py; finally whens; = 0, the curve passes throudh.

It should be noticed that the curve is always(due to the construction
process that has been used), even when it interpolates @lqooint
Py. Butin that case, the first and second derivatives drop to aer

2We use here thetést ? a : ) operator borrowed from th€ programming language
which allows one to write multiple expressions in a compaayw

/-

Figure 8: Augmentation of the influence of poifit
S0 :0751 = 1,52 = 1,53 :0.5754 = 1,55 = 1756 =0

Therefore, after the normalization step, the maximuni’ohas been
increased and the curve has been pulled tovardVioreover, neither



the maximum ofF: nor the maximum off, has been modified.
This means that the curve has not changed f®aor P,: all the
modifications are localized in the neighbourhood of pdit More
precisely, one can show that a shape paramsgténfluences only
two segments of the curves which is half the extent of therdtiree
coordinategx ., yx, 25 ) of point P, (i.e. L? locality rather tharl.*).

While s; decreases, the maximum &% increases. Finally, for
s3 = 0, this maximum is set to one, which provides a “sharg”® (
continuous) interpolation of poirft;.
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The L? locality of the influence of the parametessallows the same
kind of action on several adjacent control points. For ins& if

we decrease,, s; ands,, the curve is pulled simultaneously toward

P27 P andP4,

R

U

/
- \/\ o
Figure 10: Augmentation of the influence Bf, P; et P,
S0 :0751 = 1,52 :0.5753 :0.5754 :0.5755 = 1756 :0
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and if we set the three parameters to zero, we obtain a shzmpa
lation of P, P; and P, (see Figure 11). Finally, for the limit case

where all the parametess are setto zero, the curve merges with the

control lattice (see Figure 12). But notice that the curvedta linear
spline because the parametrizatiorCts here, whereas it is onlg°
for linear splines.
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Figure 11: Sharp interpolation of%, P- et P,
S0 :0751 = 1,52 :0753 :0754 :0755 = 1756 =0
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Figure 12: Sharp interpolation of every control point
S0 :0751 :0752 :0753 :0754 :0755 :0756 =0

This ability to mix smooth curves and sharp edges in an urcest

way makes the extended X-spline model a candidate of choice f

many applications. In vectorial font design, for instarare switches
frequenty between smoothness and sharpness. Therefenasehof
X-splines enables the design of characters with one sirgileesfor

the outline (plus eventually one spline for each hole) defibg a

small number of control points (see left part of Figure 13)

To conclude this section, note that a very useful case isrdavhen
the control lattice forms a regular polygon and all theare set to
one: the resulting curve is a circle (see right part of Figlie In

fact, this circle is only an approximated one but this appmation

is so close (for 8 control points, the amplitude of the oatitins of
the curve around the true circle represents less than arfa@td of

the radius, and for 12 control points, this variation is l#sm10~°)

that it is sufficient for most of the applicatichs Starting from that
kernel case, other conics can be approximated as well witmiéas

accuracy [5].

3A similar result is obtained with B-splines [4], therefotdd not surprizing that it
holds also for X-splines which approximate B-splines irt fearticular configuration.



Figure 13: Font design and representation of the circle

5 General X-Splines

5.1 Formulation

As they have been formulated above, extended X-spline$§ fuliny
of the properties listed in Section 2. Nevertheless, evehdy al-
low interpolating one or several control points, extendedpfnes
are still approximation splines, because only sharp imtatpons are
provided. The last feature of our list was the ability to npadate the
same model either as an approximation spline or as an irléipo
spline. The goal of this section is to show how this charéstiercan
be included in the X-spline model.

But, as recalled in Section 2, using interpolation splimeglies for-

saking the positivity of the blending functions and therefthe con-
vex hull property. For some applications (and for some Jséhnis

is inconceivable. For that reason, we have purposely stghtiis
extension from the previous section. So, the reader maysshbe-
tween the formulation that fulfills the convex hull propeewd the
formulation that provides the approximation/interpalatduality.

In Section 4, we saw that when the value of the parameteis

decreased, the blending functiéfy, , (respectivelyF;t_,) becomes
null betweentx_, and7,, (respectivelyl; | andtx41). Atthe

limit case, whensx = 0, F, , (respectivelyF;' ) is null over the
whole rang€dtx_1, tx] (respectively{tx, tr41]). Starting from that
configuration of sharp interpolation, to geta “smootfi® (continuity)

interpolation of pointP;, we must allowf,, ; andF;"_, to become
negative over these ranges. Moreover, in the same mannerlaawe
sought to approximate cubic B-splines with the basic foatiah, we
will try to approximate cubic Catmull-Rom splines with tigsneral
formulation.

If we apply the following reparametrization to the curve,

. t—tx
A

t—tx
u(t) = = 18
(= (19)

we are assured that= —1 at knottx—, whereF,,, gets negative,
u = 0 atknott, whereF | gets positive, and = 1 at knottx4,

where £, | reaches its maximum. Therefore, we have to find two

polynomials:g(u) defined orf0, 1] which represents the positive part
of Fy, andh(u) defined on[—1,0] which represents its negative
part. These two functions must join upwat= 0 with C? continuity.
As in Section 3, we can derive a system of constraints butitiis

there are two functions, which means 12 constraints:

g(0)=0 4(0)=q ¢"(0)=4q
g)=1 4J(1)=0 g"(1)=-2p (19)
h(0)=0 R'(0)=gq R"(0)=4q
h(—=1)=0 K(=1)=0 h"(-1)=0

whereq is a degree of freedom that controls the value of the first
derivative atu = 0 (the same degree of freedom has been used by
Duff in histensed interpolation spliraodel [8]. All these constraints
can be fulfilled by two quintic polynomials:

g(u) = qu+2gu® + (10—12g—p) u®
+ (2p+14¢—15) u® + (6—5 —p) u’
h(u) =qu+2qu® —2qu +qu°

(20)

Starting from these equations, the same construction psametailed
in Section 3 provides a rational quintic interpolation splimodel
that includes the properties of normality, locality afid continuity.
Moreover, the curves contain a degree of freedpmhich allows
modification of their shapes.

° ) e 0.5 1 13— 2

Figure 14: Similarity of the cubic Catmull-Rom splines and the
general X-splines blending functions (ipe= 1/2)

Two important remarks should be made about this model. ,First

in every interpolation spline model, the regularity prayes lost,
thus the curve may have unwanted oscillations. We have wbder
experimentally that these oscillations can usually bedaby lim-
iting ¢ to the rangd0, 1/2]. Second, an interesting case is obtained
for ¢ = 1/2 because the blending functions are very close to the
Catmull-Rom functions (see Figure 14). But it should becetithat

the new functions aré? continuous instead af'*.

The final step of the construction of our new spline model bélto
merge the parameterof the approximation model and the parameter
q of the interpolation one. Here again, the goal is to simptifg
degrees of freedom manipulated by the end user. Practioallyone
shape parametes, per control pointP; will be used. This is done
with the following convention:

¢ When the user sets all, in the range[0, 1], it means that
he wants to manipulate approximation splines. In that case,
s is the curvellattice distance parameter defined in Section 4
(in particular, uniform cubic B-splines are approximated f
sk = 1).

¢ When the user sets adl in the rangg—1, 0], it means that
he wants to manipulate interpolation splines. In that case,
is obtained fromsy by g = —sx/2 (S0, s = —1 provides
g = 1/2 which approximates cubic Catmull-Rom splines).

The positive/negative distinction fag, indicates clearly that there is
a breaking point: for positive;, the convex hull property is fulfilled,
for negativesy, it is not the case anymore. On the other hand the



intuitive notion of curve/lattice distance is preservedefor negative
sx. Indeed, as we will see below, the maredeparts from zero, the
more the curve departs from the control lattice.

5.2 Examples

We already know that a “sharpti® continuity) interpolation of the

control lattice can be obtained by settingallito zero (see Figure 12).

Ifwe wantto realize a “smooth{* continuity) interpolation, the only
thing to do is to set these parameters to negative valuesngtance,

by setting alls; to —1, an interpolation spline almost identical to the

Catmull-Rom spline is obtained (compare Figure 15 and Eid)r
As expected, the blending functions become partly negadive thus
the convex hull property is lost.
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Figure 15: Smooth interpolation of every control point
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Figure 16: Modification of the interpolation
S0 :0751 = 89 = 83 = —1,54 = S5 — _0~5756 =0
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By providing different values for the parametey, the shape of the
interpolation curve can be controlled precisely. For ins& one
can enable very slack interpolation for a specific zone oflaltece
and a much tighter interpolation for another zone (see EidL).

And finally, what is perhaps the most interesting featurehef X-
spline model, one can combine without any restriction, fpasand
negative shape parameteaysin order to create approximation zones
and interpolation ones in the same curve (see Figure 17).
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Figure 17: Approximation zones and interpolation zones
S0 :0751 = 82 = 83 :—1754 = S5 :1756 =0
6 Surfaces

The extension of the new model from curves to surfaces iggsitra
forward. The only thing to do is to compute the tensor prodfct
two non-normalized X-spline curves and then to apply thenadiza-
tion sted. The characteristic of the X-splines to create all possible
geometric effects by using only uniform knot vectors is Mhare
because, as we have recalled in Section 1, effects due tonkaot
nipulations (e.g. sharp edges for B-splines) are propagstng the
whole isoparametric curves. On the contrary, the shapeneteas of
the X-spline model are directly related to the control pgiabd thus
can be localized precisely on a given zone of the surface.

Because of the tensor product, two shape parametessnd s, are
provided for each control poin®, wherer; acts in theu direction
of the surface and;, acts in thev direction. A nice consequence is
that non-isotropic manipulations are allowed (for insencreating
sharpness in one direction and smoothness in the other dxgep
counterpart, the behaviour of these parameters is a bit suivde
than previously:

o r; > 0,5, >0: PyisaC?/G? approximation point
o 1, =0,s, =0: PyisaC?/G° interpolation point
o r; < 0,5, <0: PyisaC?/G? interpolation point

e rp =0, s > 0: P is an approximation point providing
C?/G° continuity inu andC? /G* continuity inv

o 1, =0, s < 0: Pyisaninterpolation point providing? / G°
continuity inu andC?/G? continuity inv

Figure 19 and Figure 18 shows some examples of X-splinessfa
You should notice the ability to create interpolation ofsdint control
points, localized sharp edges as well as soft transitiotvedsn sharp
and smooth zones; three features that are impossible (@satdnly
possible in specific cases) with any existing spline model.

4This process is sometimes callgeneralized tensor produfti]



Figure 18: Sharp extrusion from a smooth object

Note that the star-shaped flat face on the top of the objecdtigposed

of two sides with straight edges (left and bottom) and twesidith

rounded edges (top and right). Straight sides create shaigee
that are propagated all along the extrusion whereas the pleaiges
smoothly vanish when they come near the rounded sides ofphe t

face.

Figure 19: Smooth extrusion from a sharp object

7 Conclusion

In this paper, we have presented a new model of spline cunves a
surfaces. This modelincludes many classical propertiels as affine
and perpective invariance, convex hull, variation dimiout local
control andC?/G? or C*? /G° continuity, as well as some original
features such as a continum between (an approximation sfliBes
and (an approximattion of) Catmull-Rom splines, or the igbib
define approximation zones and interpolation zones in thresairve
or surface. These properties have been obtained by definireyva
family of blending functions that are quintic rational ppfmials and
introducing an original shape parameterthat providesdah control
point, a smooth transition between approximation, shagufolation
and smooth interpolation.

This paper is only intended as an initial presentation ofpires.
For space limitations, several topics could not be include. We
propose some additional results in [5] which should be atersid as
the companion paper of this one. More precisely, the folfmptopics
are discussedin it:

¢ Some precisions on efficient implementation of X-splifes:
instance, one can show that even if they are quintic, rationa
and provide more geometrical effects, uniform X-splines ar
less expensive to compute than non-uniform cubic B-spjines

¢ Lower order and higher order X-splineQuintic polynomials
have been chosen here because we soughitfp6* continu-
ity, but in fact a similar construction process can be used fo
any polynomial of degregk + 1 providing splines withC'* / G*
continuity.

e Extension to non-uniform knot vector&seometrical effects
generated by non-uniformity in classical splines can bategt
by the shape parameters, so this extension is not that vital.
Nevertheless, non-uniform knots may be useful for key-fram
animation or data-fitting.



¢ RefinementalgorithmsThis is clearly a much harder task. For
the moment, we propose only some preliminary results on a
kind of De Casteljau subdivision algorithm.
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