Combinator Libraries

Orphi the AweKid
18th June 2009

Abstract

Mainstream programming languages have a rich set of well-known and
widely used idioms for solving particular problems. These need no fur-
ther documentation here. The Haskell programming language is radically
different to any mainstream language, and it has its own radically differ-
ent way of approaching problems. However, since Haskell is an rare and
obscure language, its idioms are not widely known in the mainstream com-
munity. This document gives an informal description of one very common
Haskell idiom: the construction of combinator libraries. No knowledge of
Haskell is assumed.

1 Introduction

The majority of mainstream programming languages today are very simi-
lar. Many of them are object-oriented, and those that are not are usually
at least block-structured. The same language constructs appear in each
of these languages, and learning a new one is typically a simple matter of
learning some new syntax, and the particular mix of features the language
provides. (E.g., reflection, dynamic loading, built-in data types, etc.)

As a result, all of these languages are typically used in broadly simi-
lar ways. A common set of techniques and idioms is well-known to most
mainstream programmers, regardless of the particular language in ques-
tion. For example, implementing an abstract base class featuring many
concrete methods that call a small set of abstract ones is so common as
to be almost “the definition” of how to use object-oriented languages.

Haskell, on the other hand, is a rather rare and obscure programming
language, with a radically different design. Programs are defined as sets
of transformation rules rather than ordered lists of commands, familiar
constructs such as loops are absent from the language, the syntax does
not remotely resemble anything mainstream, and it is possible to construct
programs out of type signatures!

As aresult of this radical design, the language is also used in a radically
different way, resulting in a very different set of techniques and idioms.
Put simply, Haskell programmers approach problems from a wholely dif-
ferent angle. While whole tomes could be filled with a discussion of this
difference, this document focuses on a smaller task: presenting a simple,
common Haskell idiom to a wider audience who may not be familiar with
it.

Our subject for this document is an imformal exploration of combina-
tor libraries. We will briefly touch on the much-feared concept of monads.
The main body of this document is section 2, which contains a large ex-
ample of a combinator library. Section 3 provides a brief overview of a

second example. No knowledge of Haskell is required, and all examples
are presented as psuedo-code resembling a mainstream programming lan-
guage.

2 Building parsers

2.1 Introduction

By way of an example, let us consider the problem of building a text
parsing system.

At this point, a typical programmer using an OOP language is thinking
about designing a “parser” object and how to store the current state of
the parser, and what methods should be provided to update the parser’s
state, and maybe the parser operates as a finite state machine. ..

We however are interested in the Haskell approach. Parser libraries
are an absolutely classic application for combinator technology in Haskell
— and indeed, the Glasgow Haskell Compiler ships with such a library,
named Parsec. Our description roughly follows the outline of this library
(although many function names are changed to help readability).

2.2 What is a combinator?

Briefly, a combinator library is generally structured as follows:
e A (very) small selection of (very) simple “things” are provided.

e A selection of combinators enable the “things” to be combined in
various ways to yield more complex “things”.

e Often a number of “shortcuts” are also provided for items which are
either commonly required or non-obvious to construct.

Despite the simplicity of this approach, it can be a very powerful way to
work, as we will shortly see.

2.3 What is a parser?

Parsec treats parsers as first-class citizens. That is, a “parser” is a data
item that can be passed around and operated on by functions.

Parsec provides a Run() function which takes a parser and some text
and “runs” the parser over that text. When a parser is “run”, it does the
following;:

e The parser consumes zero or more characters of input. (Le., a given
parser might consume nothing at all, or the entire input, or anything
inbetween.)

e The parser may “succeed” or “fail”.

— If it fails, it gives a “reason” for failure.

— If it succeeds, it “returns” a single data item (which may of
course be a list object containing large amounts of data).

The caller of the Run() function is given a data structure indicating the
success or failure of the parser, and the data returned or the failure reason
(as appropriate).

So what’s what a Parsec parser is, but what parsers does Parsec actu-
ally provide?

2.4 Primitive parsers

The Parsec library provides (at least) the following parsers:

e P_Return(x): Always succeeds, consuming zero characters of input
and returning x.

e P_Fail(x): Always fails, consuming zero characters of input and
returning the text string = as the failure reason.

e P_Any(): Consumes one character of input, and succeeds returning
the read character as the result. (Fails if end-of-input.)

e P_Char(c): If the next character of input is ¢ then this parser con-
sumes it and succeeds (returning c as the result). Otherwise it fails
(with the reason “I was expecting ¢ but I actually found z”).

So these are the primitive parsers. It should be obvious that each parser
takes only a few lines to implement, their functionallity being extremely
simple. What is not yet obvious is how anything remotely useful can be
achieved with just this raw material.

Indeed, it is not actually possible to do anything really useful until we
also have some combinators to play with. ..

2.5 The P_Chain() combinator

The first combinator we will consider is the P_Chain() combinator. This
takes two parsers and combines them into a single, bigger parser. For
example,

parserX = P_Chain(parserl, parser2);

Informally, when parserX is run, it will run parser1 followed by parser?2.
More precisely,

e First, parser1 is run.
e If parser1 fails, then parserX fails (with the same reason data).

e If parserl succeeds, it’s “result” is thrown away, and parser?2 is
run (starting from the input position where parser1 left off — note
that the Run() function can’t do this). The success/failure result of
parser?2 is then the overall result for parserX.

It should be clear that repeated application of P_Chain() allows an ar-
bitrary number of parsers to be “chained together” into a single large
parser. It should also be clear that

parserX = P_Chain(parserl, P_Chain(parser2, parser3));
parserY = P_Chain(P_Chain(parserl, parser2), parser3));

both implement equivilent parsers. That is, the P_Chain() parser is as-
sociative, and therefore the order of composition is unimportant. Note
however that it is definitely not commutative — that is, exchanging the
order of the parsers themselves, rather than the order of composing, does
change the resulting parser.

Consider a small example:

parserX =

P_Chain(P_Char(’B’), P_Chain(P_Char(’I’), P_Char(’G’)));

This parser will succeed for any string beginning with BIG (and return G
as the result) and fail for any other input string. For example, the string
BAD would cause a failure with reason

Line 1, column 2: Unpexected A; expecting I.

The “reason” is a data structure that can be programmatically queried,
rather than a plain text message. (E.g., you could query the line number
and hilight that line on-screen or similar.)

Parsers that parse a specific, fixed string are very common, so Parsec
provides a shortcut for this common case:

functionP_String(str)

{
parser = P_Char(str[0]);
for (p=1; p<str.length; p++)
parser = P_Chain(parser, P_Char(str[pl);
return parser;
}

Now we can simply write P_String("BIG") to build the same parser. This
is much shorter to write and easier to read.

Notice, however, that our “big parser” still returns G as its result. We
can change this with the following dodge:

parserY = P_Chain(P_String("BIG"), P_Return("BIG"));

Recall taht P_Chain() will only run the second parser if the first one
succeeds. So if the first parser (P_String()) succeeds, the second one
(P_Return()) will be run, instantly returning the string just parsed.

We could of course have P_Return() return something more useful.
But the above example illustrates why this primitive is useful; it enables
us to control what value a given parser returns on success.

Note that the “real” implementation of P_String() actually returns
the entire string as the parser result, rather than just the final character.
(So the listing given above is actually incomplete. It is incomplete in other
ways too, as we will see later.)

2.6 The P_Fork() combinator

Thus far, we can’t do much of any interest. We can write parsers that
succeed if one specific input is present, and fail otherwise. Let us now
consider a second combinator, P_Fork(). Like P_Chain(), it takes two
parsers and returns a parser. Let us consider how the two combinators
differ.

paserX = P_Chain(parserl, parser2);
paserY = P_Fork(parserl, parser2);

As we know, P_Chain() will run one parser, and if that succeeds it will
then run the other. However, P_Fork() will run one parser, and if that
fails it will run the other parser!

Put simply, P_Chain() runs one parser and then the other, while
P_Fork() runs one parser or else the other. More techincally:

e First, parserl is run.
e If parserl succeeds, parserY succeeds (with the same return value).

e If parser1 fails, parser2 is run (starting from where parser1 started,
not where it finished).

e If parser2 succeeds, parserY succeeds (with the same return value).
In other words, the failure reason from parser1 is “ignored”.

e If parser2 fails, the failure reasons for both parsers are combined
together and parserY fails with that reason data.

As an example, consider this:
parserYN = P_Fork(P_Char(’Y’), P_Char(’N’));

This will parser the character Y (and return same), or it will parse the
character N (and return same). If the input is neither of these, it will fail
with a message similar to

Line 1, column 1: Unpexpected J, expecting Y or N.

Note how the two failures have been “merged” into a single message.

By using P_Fork(), you can chain together an arbitrary number of
possible alternative parsers. (P_Fork() is associative but not commuta-
tive, just like P_Chain().) The general method is along the lines of “parse
this as an integer, or else parse it as a variable name, or else parse it as a
function call, or else...”

It should now be clear that when a parser “fails”, this is not a catas-
trophic condition, but merely a normal part of how a complex parser
works internally. If the top-level parser fails, this indicates a user error in
the input provided. But otherwise, it’s just business as usual.

2.7 Optional parsing

Consider the following parser:
parserX = P_Fork(P_Char(’X’), P_Succeed(’?’));

This parser either consumes the letter X (returning X), or consumes noth-
ing and returns ?. In other words, it optionally parses an X, returning a
default value if one isn’t found.

This is a common need, and so again Parsec provides a shortcut:

function P_Optional(parserl, default_value)
{
return P_Fork(parserl, P_Succeed(default_value));

}

2.8 Multiple parsing

Now suppose we want to run the same parser multiple times over, repeat-
ing it as many times as possible until it fails. Parsec provides the following
shortcut for this:

function P_Manyl(parser)
{

return P_Chain(parser, P_Optional(P_Manyl(parser)));
}

Here we parse one copy of the thing, “optionally” followed by “many”
more copies.

Notice that this parses one or more copies of the given parses; Parsec
provides another variant that does zero or more copies. Incautious use
of this facility can result in infinite loops though! (Parsec also provides
shortcuts for running a parser exactly n times, and for parsing multiple
items that have seperators or terminators.)

2.9 The P_SuperChain() combinator

The parsers given so far are all very well, but all they do is succeed or fail
depending on what the input is. None of them return anything of much
interest. There is a specific reason for that.

Suppose, for example, that we wanted to run two parsers and return
the results of each. We could try

parserX = P_Chain(paserl, parser2);

This will run parser1 followed by parser2. But the P_Chain() combina-
tor throws away the result from parserl before parser2 is even run. So
how are we to make a parser that returns both results?

To do that, we need a new, more complicated combinator, which I will
call P_SuperChain(). Instead of taking two parsers, it takes a parser and
a function that returns a parser, like so:

parserX = P_SuperChain(parserl, functionl);
What it does is this:
e First, parserl is run.

e If that succeeds, function1() is called, and the return value from
parserl is passed as an argument.

e functionl() must return a new parser, which P_SuperChain() then
runs (in the style of P_Chain()).

Note that if parser1 fails, the rest of the sequence is aborted, similar to
the way P_Chain() operates.
To see how we can achieve our stated goal, consider the following code:

parserX = P_SuperChain(parserl, foo);

function foo(x)
{
function bar(y) {return P_Success([x, y1);}

return P_SuperChain(parser2, bar);

}

Let us pick our way through this tangle of code. When parserX is run,
the following occurs:

e parserl is run.

e P_SuperChain() calls foo() with the result from parser1l as its ar-
gument. In other words, x is now whatever the result from parser1
was.

e Asyou can see, the foo () function immediately returns a new parser,
which also uses P_SuperChain().

e parser2 is run.

e The bar() function is called, with the result from parser as its
arugment (i.e., y).

e Notice that bar () is declared inside foo(), so it can access x (which
is a parameter to foo()). When run, the bar() function just returns
a P_Succeed () parser which yields the value we want when run.

This might seem like an awful lot of work just to achieve such a tiny
task! However, the above is significantly easier to implement in Haskell.
(Functions can be nameless, and can be declared in-line in the middle of
an expression.) In fact, Haskell actually provides a special form of syntax
suguar especially for doing things like the above. It looks something like
this:
parserX =
BEGIN
parserl --> x;
parser2 --> y;
P_Success([x, y1);
END;
This is automatically converted into the previously shown code. However,
it’s both easier to read and to write. Without going into the precise
process, suffice it to say that

parserA;
parserB;
parserC;

is converted into calls to P_Chain(), while

parserA --> a;
parserB --> b;
parserC --> c;

is converted into calls to P_SuperChain() with extra auxhilery functions
being auto-generated behind the scenes. The precise algorithm isn’t im-
portant; trust me, it works.

Using this technology, almost all of Parsec’s built-in shortcuts (e.g.,
P_Many()) actually return the thing parsed, rather than just running the
parser and discarding its output.

2.10 A complete example

Now that we’ve seen most of the Parsec library, let’s implement something
with it:

expression = P_Fork(operation, P_Fork(number, variable));

operation =

BEGIN
P_Char(’ (*);
expression --> x
operator --> o
expression --> y
P_Char(’)’);
P_Success([o, x, y1);

END;

operator = P_Fork(P_Char(’+’), P_Char(’-’));

number = P_Many1(P_Digit());
variable = P_Manyl(P_Letter());

Here we have a parser which will accept all of the following strings:

5

X

(2+2)

(2+(2+2))

((2+x) -y)
(((x-y)+xyz)-25)

It will also return a primitive tree structure representing the thing it has
parsed. And it will correctly report things like mismatched brackets. (The
parsers P_Digit() and P_Letter() are pre-defined shortcuts provided by
Parsec itself.)

2.11 A cautionary tale

Notice that all compound expressions must be bracketted. This simplifies
parsing, but it’s annoying for the user. Let’s see if we can’t remove that
restriction. We might try to do that by writing

expression = P_Fork(operation, ...);
operation =
BEGIN
expression --> x
operator -=> o0
expression --> y
END;

This will dive into an infinite loop when run. To understand why, consider
what Parsec will do:

OK, I need to parse an expression. How do I do that? OK, well
it says an expression might be an operation, so how do I parse
an operation? OK, it says to start by parsing an expression
and putting it in x. OK, so how do I parse an expression?. ..

You see the circularity in the logic? This is technically known as a left-
recursive grammer, and Parsec cannot handle such a thing.

Fortunately, in this case it is easily possible to factor the grammer to
avoid the left-recursion. The solution is of the form

expression =

BEGIN
P_Many1SepBy(terml, P_Char("-")) --> term_list;
P_Succeed(fold("-", term_list));

END;

terml =

BEGIN

P_Many1SepBy(term2, P_Char("+")) --> term_list;
P_Succeed(fold("+", tern_list));

END;

term2 = P_Fork(number, variable);

In other words, we parse a list of “terms” seperated by operators, and
then use the fold function to insert the appropriate operator between the
terms. (This function is pre-defined in Haskell, but is not hard to define
in any language.) In this way, the left-recursion is avoided.

Notice the way in which a terml is a sequence of term2. This can
be extended, and used to implement operator precedences (e.g., + binds
tighter than - in our example above).

Again, Parsec provides a (rather more complicated) shortcut function
for multiple complicated expression parsers. It requires a structure de-
scribing the rules of the grammer and parsers for the individual parts,
and assembles them for you in a way yielding the requested operator pri-
orities and avoiding left-recursion.

2.12 Error messages

As already mentioned, the P_Char() function tells you what it was ex-
pecting to find when it failed, and P_Fork() merges such messages. But
we can do better still. There is a combinator called P_Name () which takes
a parser and a string and “names” the parser with that string. When the
parser fails, it is mentioned by name. For example,

unexpected +; expecting number, variable or (.

if you had parsers named “number” and “variable”.

2.13 Backtracking

In the interests of efficiency, the P_Fork() combinator doesn’t actually
work in exactly the way described earlier. We said that if the first parser
fails, the second parser is run. This isn’t entirely true. If the first parser
fails before consuming any input, then the second parser is run. If the first
parser consumes some input and then fails, the second parser is not even
tried, and the whole operation fails.

The reason for this is simple; if the first parser is allowed to consume
some input before failing, we must “rewind” the input stream to the same
place before starting the second parser. To be able to do this, at every
fork we must keep hold of that data in case the current branch fails and
we need to go to the other branch.

Actually, in many cases you can tell from the first character what the
next item is. For example, if you're expecting either a series of digits or
a series of letters, you just need to use whichever parser gets past the
first character without failing. Indeed, if you read three letters and then
a digit, it is actually pointess to try the other parsers because we know
they will all fail.

So, in the name of efficiency, Parsec defaults to not backtracking. This
means that as soon as a character of input has been consumed, the garbage
collector can reclaim the memory that character uses (in principle, at
least). If, on the other hand, you want to be able to backtrack, Parsec
provides the P_Try() combinator.

P_Try() takes a parser and makes it so that if that parser fails, it “looks
like” it failed without consuming any input. In other words, P_Try() is
responsible for being able to rewind the input stream, and hence the
inevitable overhead in memory.

In summary: By default Parsec takes the no-overhead choice of not
allowing backtracking. If you need backtracking, you can manually turn
it on in just the places where you need it, so overhead is minimised. You
only pay for what you need.

2.14 The real Parsec

That concludes our little discussion of Parsec. I would like to make a few
assorted notes:

3

Writing long sequences of P_Chain(P_Chain(P_Chain(... becomes
tedious rapidly. In the real Haskell implementation, this combinator
is actually called ‘>>’. This means that you can write things such as
‘paraserl >> parser2 >> parser3d’.

Similarly, P_Fork () is actually called ‘<|>’.

Parsec’s actual parsers and combinators do not have ‘P_’ in their

names. I added that for clarity. (So P_Return() is actually just
‘return’ in Haskell. This seems to confuse newcommers greatly,
since they expect return to be a language keyword for returning
data from a function, not a function for constructing parsers.)

The P_SuperChain() function is actually called ‘>>=’. For no specific
reason. (!)

Together, return and >>= (i.e., P_Return() and P_SuperChain())
form Haskell’s much-feared monad concept. If you understood how
P_SueprChain() works, you now know about monads!

In the general case, return turns an ordinary-thing into a monad-
thing (in this case, a parser), and >>= runs a monad-thing, takes the
data it produces and feeds it to a function (which is obliged to return
a new monad-thing), and then runs the monad-thing just returned.

Since Parsec parsers are a monad, Parsec is a monadic combina-
tor library. A surprising number of things besides parsers can be
represented as monads, so monadic combinator libraries are very
common.

Haskell’s “special syntax” for using P_SuperChain() actually applies
to any monad, not just to Parsec parsers. In fact, basic input/output
operations are represented as a monad in Haskell, which explains the
need for syntax sugar. (I/O is a rather common programming task,
after all.)

Parsec has a number of additional facilities that I haven’t mentioned
here. For example, Parsec isn’t limited to processing lists of charac-
ters; you could use it to process lists of tokens instead, if you were
using a seperate tokeniser. (Doing so tends to be slightly more ef-
ficient.) It also has features for opening and parsing files from disk
from inside a parser (e.g., for #include functionallity) and so forth.

Financial contracts

Not wishing to give the impression that combinator libraries are only of
use for constructing parsers, we will now briefly skim a description of a
library for working with financial contracts.

The basic idea is that a “contract” has a financial “value” at any
given point in time. This is our starting point, from which everything else
follows.

The simplest contracts have a fixed value that never changes for all
eternity. (Unlikely in reality, but useful for modelling.) Then we have
various ways of combining contracts. For example, we can form a new

10

contract who’s value at any given time is the sum of the values of two
subcontracts at that time.

Another possibility is a contract that initially has the same value as
contract X, until at a certain time when its value changes to be the same
value as contract Y.

More tricky still is a contract that allows you to choose two possible
“options”. Once the choice is made, the contract’s value is the same as
the value of the chosen subcontract.

It should be evident that by using these functions for combining simple
contracts together, new contracts of great complexity and sophistication
can be constructed. Further, the contract construction functions provide
a “language” for humans discussing contracts. It should also be quite
evident that figuring out what value a given contract has at any point
in time (given any particular set of choices) is a fairly easy task for a
computer.

DOCUMENT VERSION: RELEASE #01.

11

