
Extensions to the graphical interpretation of
L-systems based on turtle geometry

R. Měch, P. Prusinkiewicz,
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada T2N 1N4
e-mail: mechjpwp@cpsc.ucalgary.ca

and J. Hanan
CSIRO - Cooperative Research Centre

for Tropical Pest Management
Brisbane, Australia

e-mail: jim@ctpm.uq.oz.au

Abstract

This material introduces extensions to the graphical interpretation of L-systems
based on turtle geometry, resulting in a higher degree of realism of visualized models.

1

Contents

1 Introduction 3

2 Circles and Spheres 3

3 Generalized cylinders 6
3.1 L-system defined parametric curve . 7
3.2 Modifying the shape of generalized cylinders 9

3.2.1 Specifying tangents of the axis curve. 10
3.2.2 Modifying the longitudinal section 11
3.2.3 Defining the cross-section 15

3.3 Twist of generalized cylinders . 21
3.4 Branching of generalized cylinders . 24

4 Surfaces 25
4.1 Predefined surfaces. 25
4.2 Developmental surfaces 26
4.3 Developmental bicubic surfaces. 29

5 Textures 34
5.1 Textured bicubic surfaces 35
5.2 Textured cylinders and generalized cylinders 35
5.3 Textured polygons .. 38

6 Response to directional stimuli 38
6.1 Response by twist .. 41
6.2 Combination of directional responses 42

A Interpreted symbols 45

B View file commands 50
B.1 Specification of contours . 50
B.2 Definition of textures 52
B.3 Definition of tropisms and twists. 53

2

1 Introduction

The graphical interpretation of L-systems introduced in [11, 12] and extended to parametric
L-systems in [9, 16] has been extended by incorporating several features aimed at improving
the realism of generated plant structures. This report is intended as a user’s guide to these
features.

The graphical interpretation is based on a Logo-style turtle which is controlled by com-
mands associated with selected modules. The turtle is characterized by the following pa-
rameters (see Figure 1):

position position in a three-dimensional coordinate system;

heading heading vector specifying turtle’s orientation (see Figure 1);

left left vector;

up up vector;

line width current width of a line or cylinder drawn by the turtle;

color index index of the current color or material;

texture index index of the current texture;

contour id of the current contour for generalized cylinders;

elasticities a set of parameters specifying the susceptibility of the direction adjustments
due to tropisms.

Initial values of the turtle parameters are defined by global viewing parameters. During the
interpretation, turtle parameters can be modified by various modules (see Appendix C).

Following sections introduce new features in graphical interpretation of L-systems and
illustrate their use with several examples.

2 Circles and Spheres

Circles and spheres are useful primitives, and have been added to the list of interpreted
primitives.

Circles and spheres are defined by following modules:

@o draw a disk in planez = 0. Turtle position determinesx andy coordinates of the disk
center. The disk diameter is defined by turtle parameterline width.

3

bark

leaf veins

textures

elasticities

colormap /
materials

contours

none

Turtle

up

left

heading

line width

position

wood

Figure 1: Turtle parameters.

Figure 2: A cylinder without and with caps.

@c draw a disk in the plane of turtle heading and left vector, with the center at the turtle
position and diameter equal to turtle parameterline width.

@O defines a sphere at the turtle position with diameter equal toline width.

If a parameter is added to any of the three modules, it specifies the diameter of the disk or
sphere.

Module@ocan be used any time the simulated plant is two-dimensional, for example, to
visualize a signal traveling through the plant. In the case of a three-dimensional structure, a
module@Owould be used for the same purpose. For example, thefollowing homomorphism
makes use of module@cto terminate cylinders with circular caps (see Figure 2).

F(len) ![&(90)@c]F(len)[&(90)@c]

4

a) b)

Figure 3: A branch rendered: a) with visible discontinuities, b) with sphere at the end of
each segment.

Each symbolF is preceded and followed by module@crotated by90� in square brackets
to localize the effect of the rotation.

The next few examples illustrate the use of spheres.
When two subsequent branch segments are not in the same line, a visible crack appears

(Figure 3a). A simple solution is to draw a sphere at the top of each segment. If segments
are not tapered, i.e. the widths at the base and the top of the segment are the same, a sphere
can be inserted after each moduleF in the successor of all L-system productions, or the
following homomorphism production can be used:

F(len) !F(len)@O

If segments are tapered, the sphere must be inserted after the module! or # modifying
the width at the top, otherwise segments would not be tapered and the diameter of the
sphere would be equal to the width of the segment at its base. The branch in Figure 3a was
generated by the following L-system in 3 steps:

!: F!A
p1: A !/(90)-(32)F!A

The smoother branch in Figure 3b was generated by the same L-system with the following
homomorphism

homomorphism
F! !F!@O

A better solution to creating curved branchess is presented in Section 3.

An example of spheres used as an important part of the model is illustrated in Figure 4
where a molecule of butane is rendered using spheres as atoms of carbon and hydrogen

5

Figure 4: Molecule of butane generated using an L-system.

and segments represent their chemical bounds. The molecule was created by the following
L-system which allows one to visualize hydrocarbon molecules of various lengths (i.e. with
different number of carbon atoms):

#define Len 4 /* length of the hydrocarbon chain */
#define � 70.5 /* divergence angle */
#define Csize 0.6 /* diameter of carbon atom */
#define Hsize 0.5 /* diameter of hydrogen atom */
!: -(90)#(0.15)|HX(Len)

p1: X(n) : n > 0 !FC[ˆ(�)FH]/(120)[ˆ(�)FH]/(120)[ˆ(�)X(n-1)]
p2: X(l) : l == 0 !FH
p3: C ![;@O(Csize)]
p4: H ![;;@O(Hsize)]
The simulation is run forLen+ 2 steps to obtain a molecule withLen carbon atoms.

3 Generalized cylinders

It is often desirable to create smooth curvatures, especially when modeling plants which
contain many curved segments. One approach is to model a curved branch segment with
several short straight segments approximating the curvature. The advantage of this method
is the possibility of the internal control of the curvature by L-system productions. On the
other hand, this approach makes L-system productions rather complicated and elongates
the generated string.

In another approach, curved branches are modeled as generalized cylinders. A set of

6

control points defines the axis of a generalized cylinder as a parametric curve consisting of
a sequence of cubic curve segments. The cross-section of a branch segment, for example a
disc, is then swept along the cylinder axis creating a three-dimensional object (see also [2]).
In our case, segments of the parametric curve are defined as Hermite curves [7]. A Hermite
curve is a cubic polynomial curve specified by two control points and tangent vectors in
these points.

3.1 L-system defined parametric curve

During the interpretation of an L-system generated string, control points specifying the axis
of a generalized cylinder are created when following special modules are encountered:

@Gs start a generalized cylinder — defines the first control point.

@Gc(n) continue a generalized cylinder — defines a control point. The cylinder has to be
started with module@Gs. The optional parametern specifies the number of cylindri-
cal mesh strips drawn between this and previous control point.

@Ge(n) end a generalized cylinder — defines the last control point. The optional param-
etern has the same function as for module@Gc.

Each pair of consequent points specifies a Hermite curve.
The location of a control point is equal to the actual turtle position when the module

@Gxis interpreted. The direction of tangents of Hermite curves originating or terminating
at the control point is equal to the turtle heading vector. The length of the two tangent
vectors of a single Hermite curve is computed as the Euclidean distance between the two
control points multiplied by a tangent coefficient. This allows the curve to be scaled up and
down without changing the curvature. The tangent coefficient defaults to 1.2 (an empirical
value yielding a smooth curvature along several connected curves).

For example, the following string defines a generalized cylinder around a single Hermite
curve:

@Gsf-(45)f@Ge(6).

Figure 5a shows the turtle path in grey and the two control points with the resulting curve
in black. If a disk is swept along the curve, a generalized cylinder is created (Figure 5b
and 5c).

The resulting generalized cylinder has to be polygonized to be visualized on the screen.
For this purpose, it is split into several cylindrical mesh strips. The first parameter of mod-
ules@Gcand@Gespecifies how many mesh strips are created between two control points
(the default value is 1). A cylindrical mesh strip is defined by two points on the generalized
cylinder axis. These points can be determined from the parametric equation of the Hermite

7

a) b) c)

Figure 5: A simple generalized cylinder: a) the original Hermite curve, b) the longitudinal
section, c) a wireframe model.

e)d)c)b)a)

Figure 6: The same generalized cylinder visualized with 1 to 5 cylindrical mesh strips.

curve segment. If the parametric equation of the curve segment isF (u) for u going from
0 to 1, thei-th strip out ofn is between pointsF ((i � 1)=n) andF (i=n). The disk swept
along the axis is always perpendicular to the axis and the axis tangent in a pointF ((i�1)=n)
or F (i=n) can be determined from the derivationF 0(u) of the curve cubic function. Sec-
tions 3.2.3 and 3.3 describe in more detail the method of connecting two subsequent disks.

In the previous example, there are 6 cylindrical mesh strips along the generalized cylin-
der. The same generalized cylinder with different number of mesh strips (1 to 5) is visual-
ized in Figure 6.

8

a) b)

Figure 7: A fractal curve drawn using lines (a) and generalized cylinders (b).

As a more complex example, the following L-system defines a fractal curve known as
the snake Kolam pattern [14] (Figure 7a); it is similar to Sierpinski space-filling curve [17]:

!: FX+F+FX+F
p1: X !X-F-F+FX+F+FX-F-F+FX

To visualize the curve with a generalized cylinder, it is convenient to define a homomor-
phism that replaces each moduleF representing a straight line segment with a substring
f@Gc(4)f defining one control point in the middle of an invisible line segmentff . The
axiom is modified to differentiate between the first segment and any other, because the gen-
eralized cylinder must be started using module@Gs. Also an additional modules+F are
added at the end of the axiom to define another control point which would coincide with
the first one closing the generalized cylinder:

!: G X+F+FX+F +F
p1: X !X-F-F+FX+F+FX-F-F+FX
homomorphism
G!@Gsf
F!f@Gc(4)f

The resulting curve after 2 derivation steps is shown in Figure 7b.

3.2 Modifying the shape of generalized cylinders

The shape of a generalized cylinder segment between two consecutive control points can be
modified by modules:

@Gt(start,end) controls the length of tangents of a Hermite curve between two con-
secutive control points by modifying the default value 1.2 of tangent coefficients (see

9

e)c) d)b)a)

Figure 8: Hermite curves with different values of tangent coefficients: a) default 1.2,1.2; b)
2,2; c) 0.5,0.5; d) 4,1; e)3,-2.

Section 3.2.1).

@Gr(angle1,length1,angle1,length2) specifies the slope and length of two
tangents of a Hermite curve defining the radius change as a longitudinal section be-
tween two consecutive control points of a generalized cylinder axis (see Section 3.2.2).
As a default, the radii at the two control points are linearly interpolated along the seg-
ment.

@Gr(flag) switches on (flag =1) or off (flag =0) an automatic adjustment of tangents
of a longitudinal section for segments of non-unit length. The longitudinal section
is always defined for a segment of a unit length and then stretched onto the segment
of a non-unit length. As a default, tangents are not adjusted after the stretching (see
Section 3.2.2 for more details).

@#(id) replaces the default disk cross-section with a user-defined cross-section with an
index id (see Section 3.2.2 and Appendix B.1).

3.2.1 Specifying tangents of the axis curve

Module@Gt(start,end) modifies the tangent coefficients for tangents at the start point
and at the end point of a Hermite curve specifying the generalized cylinder axis. The module
@Gthas to be inserted before the module defining the second control point of the Hermite
curve segment. Figure 8 illustrates the use of the module@Gt. String:

@Gs-(45)f-(45)@Gt(start,end)@Ge(20)

is interpreted with different values of tangent coefficientsstart and end . Visualized
tangent vectors are scaled by 1/4 to fit in the figure.

10

0

u

t=0

t

v

t=1 1

a) b) c) d)

Figure 9: Radius interpolation: desired Hermite curve (a) applied to a generalized cylin-
der of length 1.0 (b) and 1.5 (c,d) without (c) and with (d) adjustment of tangents of the
longitudinal section.

3.2.2 Modifying the longitudinal section

If the radii of the line cross-section associated with consecutive control points are different
from each other, the radius of cross-sections between the two control points is interpolated.
As a default, the radius is interpolated linearly. If the radius at the first control point isrb
and the radius at the second control point isrt, the radiiri andri+1 of the i-th mesh strip
out ofn are:

ri = rb +
i�1
n
(rt � rb)

ri+1 = rb +
i
n
(rt � rb) i = 1; 2; :::; n:

It is also possible to define a two-dimensional Hermite curveR(t) = (Ru(t); Rv(t))
(for t 2 h0; 1i) capturing the change of the “longitudinal section” of a straight generalized
cylinder with length 1 (Figure 9a and 9b). The first coordinate,Ru(t), specifies the position
along the axis of the generalized cylinder (Figure 9a). The coordinateRv(t) defines the
radius at the computed pointRu(t) on the cylinder axis.

The curveR(t) is defined by the radiusrb at the bottom and radiusrt at the top of a gen-
eralized cylinder segment of a unit length, specifying two control points(0; rb) and(1; rt),
and two tangents at these control points. In the case of the default linear interpolation,
mentioned above, both tangents are(1; rt � rb).

Tangents of the curveR(t) can be modified by a module@Grwith two or four param-
eters. The first two parameters specify the angle of the first tangent with theu axis and

11

the tangent’s length. Similarly, the third and fourth parameter define the second tangent. If
only two parameters are included with module@Grthe second tangent is equal to the first
one. If the length of a tangent is 0, the default tangent(1; rt � rb) is used. As in the case of
the module@Gt, the module@Grhas to be placed before the module specifying the second
control point of a single Hermite curve segment.

Figure 9b illustrates the use of the module@Gtin a generalized cylinder of length 1,
base radius 0.2, and top radius 0.1:

!(0.4)@Gsf(1)!(0.2)@Gr(30,4.5,0,3.5)@Ge(20).

To specify tangents of the longitudinal section, a module@Gtwith parameters30�, 4.5,0�,
and 3.5 was inserted before the module@Gewhich defines the second control point.

If the line segment has a non-unit lengthlen the longitudinal section is defined for a
segment of a unit length, using valuesRu(t) going from 0 to 1, as in Figure 9a and then
it is stretched along the axis of the segment. If the axis is represented as a lineF (u) =
~P + u � len � ~H, u 2 h0; 1i, where~P is a point at the bottom of the segment and~H is the
unit direction of the segment, then thei-th mesh strip is between pointsF (Ru(

i�1
n
)) and

F (Ru(
i
n
)) with radiiRv(

i�1
n
) andRv(

i
n
):

The generalized cylinder of length 1.5 in Figure 9c uses the same parameters for@Gr
as in the previous example:

!(0.4)@Gsf(1.5)!(0.2)@Gr(30,4.5,0,3.5)@Ge(20).

Note that in this case the specified angle30� of the first tangent of the radius curveR(t)
does not correspond to the real angle of the longitudinal section curve with the generalized
cylinder axis. This is due to the scaling of the curve along just one axis (u). It is possible
to adjust the tangents after the mapping of the curveR(t) onto a segment of lengthlen
to keep the angle with the cylinder axis the same as specified by the module@Gr. The
tangent adjustment, initially disabled, can be switched on and off by a module@Gr(1)
and@Gr(0) , respectively. The cylinder in Figure 9d was generated using the same string
as in the previous example, with the tangent adjustment switched on by a module@Gr(1) .

If the generalized cylinder segment is not straight, the curveR(t) defines the longitudi-
nal section of a straight segment of a unit length with radii at the base and at the top equal
to radii of the curved segment. The longitudinal section is then mapped onto the axis of
a curved genralized cylinder similarly as in the case of a straight segment of a non-unit
length: if the axis is represented as a Hermite curveF (u), u 2 h0; 1i, then thei-th mesh
strip is between pointsF (Ru(

i�1
n
)) andF (Ru(

i
n
)) with radii Rv(

i�1
n
) andRv(

i
n
): In the

case of a curved segment, it is not easy to determine the length of the generalized cylinder
axis. The adjustment of tangents of the longitudinal section, when required, is thus made
using the Euclidean distance between control points of the cylinder axis.

An example of a curved generalized cylinder with the same longitudinal section as in
the previous example is in Figure 10a. The segment is specified by the following string:

12

a) b) c)

Figure 10: Curved generalized cylinders: a) with radius interpolation; b) sweeping of a
cross-section along the axis; c) crossed cross-sections when curvature radius is high.

!(0.4)@Gs-(45)f-(45)!(0.2)@Gr(30,4.5,0,3.5)@Ge(20).

The cross-section of a generalized cylinder is perpendicular to the cylinder axis at each
pointF (Ru(

i
n
)). Thus it can happen that if the radius of the axis curvature is smaller than

the radius of the generalized cylinder segment, two subsequent cross-section are crossed
(Figure 10b and 10c). Since the occurrence of these artifacts on generalized cylinders rep-
resenting parts of a plant is rare, there is no mechanism for avoiding these artifacts imple-
mented in the modeling programcpfg .

The shell in Figure 11a illustrates the default change in radius of a tapering generalized
cylinder that follows a helico-spiral [4]. The shell was generated in 117 steps using the
following L-systems:

#define R 1.03 /* scaling between subsequent shell segments */
#define Ang1 20 /* angle of rotation between segments */
#define Ang2 2.1 /* angle of twist between segments */
#define Wid 5 /* width scaling */
!: #(Wid)@Gt(1.1)@GsA(1)
p1: A(s) ! +(Ang1)/(Ang2)F(s)A(s*R)
homomorphism
h1: F(s) ! f(s)#(s*Wid)+(Ang1/2)@Gc(4)-(Ang1/2)

The axiom! defines the first control point of the generalized cylinder axis and a moduleA.
The productionp1 replaces the moduleA by a straight line segment and a new moduleA.
The segmentF is rotated in such a way that the sequence of segments forms a helico-spiral.
The homomorphism productionh1 replaces the segmentF by an invisible segmentf of the
same length with a control point at the end. The rotation before and after the control point
makes the turtle heading vector at the control point approximately equal to the tangent of
the helico-spiral.

13

a) b)

Figure 11: Shells generated with the default radius interpolation (a) and with modified
radius tangents (b).

The possibility to control tangents of the longitudinal section of a generalized cylinder
allows the user to create complex shapes, such as the Precious Wentletrap shell in Fig-
ure 11b. To generate the shell, the previous L-system was modified to distinguish odd and
even segmentsF :

#define R 1.02 /* scaling between subsequent shell segments */
#define Ang1 -15 /* angle of rotation between segments */
#define Ang2 -4 /* angle of twist between segments */
#define Wid 6.4 /* width scaling */
!: #(Wid)@Gt(1.1)@Gr(1)@GsA(0.9,0)
p1: A(s,n) ! +(Ang1)/(Ang2)F(s,n)A(s*R,n+1)
homomorphism
h1: F(s,n): n %2!=0 ! f(s)#(s*Wid*0.75)-(Ang1/2)@Gr(-100,2.5,0,4)

@Gc(12)+(Ang1/2)
h2: F(s,n): n %2==0 ! f(s*0.9)#(s*Wid)-(Ang1/2)@Gr(0,3,60,2.5)

@Gc(12)@Gr(60,1,-100,1) f(s*0.1)@Gc(12)+(Ang1/2)
The homomorphism productionh1 replaces odd segmentsF by and invisible segmentf
with a control pointP at the end. This control point is in the middle between two protruding
ridges on the shell. Thus the diameter is reduced by one quarter. The homomorphism
productionh2 defines two control pointsR andS close to each other. Both points are
located on the ridge. The tangents between pointsP andR, 0� of length 3 and60� of length
2.5, define the first slope of the ridge. Tangents (60�,1) and (�100�,1) between pointsR
andS specify the tip of the ridge and tangents (�100�,2.5) and (0�,4) control the second,

14

y

x0 1

1

a)
U

R

b) c)

Figure 12: A 2D contour defined as a closed spline (a) is applied to both ends (b) or just
one end (c) of a generalized cylinder segment.

concave slope of the ridge. Since the distance between control points is increasing towards
the shell opening, the scaling of tangents is switched on by module@Gr(1) in the axiom.

3.2.3 Defining the cross-section

As a default, the cross-section (contour) of a generalized cylinder is a disk. It is possible to
use an arbitrary contour defined as a closed three dimensional parametric curve consisting
of several B-spline segments. The contour curve is specified by a set of control points which
are read from a text file (see Appendix B.1). Control points are defined by two coordinates,
in which case the third coordinates is assigned to be 0 (Figure 12a), or by three coordinates
(Figure 13a). The dots in Figure 12a represent the specified control points with the first
control point (close to they axis) a little bigger. The circle with radius 1 represents the
default circular contour for comparison.

If there aren control pointsPi (i = 0; :::; n � 1) specifying the contour, the contour
consists ofn B-spline segments. Each segment is computed using a parametric B-spline
functionFi(t), i = 0; :::; n � 1 for t 2 h0; 1i, based on four control pointsPi, P(i+1)%n,
P(i+2)%n, andP(i+3)%n (wherex%y denotes the remainder from the division ofx by y).
Thus, segmentsFn�3(t), Fn�2(t), andFn�1(t) are formed using control points at the begin-
ning of the sequence of control points, forming a closed curve.

Generalized cylinders are visualized using cylindrical mesh strips with a certain number
of polygons around the mesh. The numberp is set at the beginning of the visualization (see
Appendix B.1). The value ofp is 32 in Figure 12b and 12c. When a non default contour is
used, it is necessary to find the required numberp of vertices on the contour. These vertices
are computed in such a way that the length of the contour between them is approximately
constant along the contour. For this purpose,10n points on the contour (n is the number
of control points specifying the contour) are computed with a constant step of the curve

15

z

y

x

0

1

1

a) U

R

b) c)

Figure 13: A 3D contour defined as a closed spline (a) is applied to one end of a generalized
cylinder segment (b,c).

parametert. Distances between the points (in the Euclidean space) are used to determine
the equally spaced verticesVi, i = 0; ::; p � 1, around the contour. To be able to connect
vertices of different contours, all vertices are rotated around thez axis so that the first
vertex lies on thex axis (in the contour coordinate space). In the Figure 12a, the first vertex
is marked by a thick line, thus in this case all vertices are rotated clock-wise by about70
degrees.

During visualization of a generalized cylinder, contour verticesVi are used to compute
verticesCi of the contour of a cylindrical mesh along the generalized cylinder:

Ci = P + radius(Vi;x
~U + Vi;y

~R + Vi;z
~H)

using turtle’s position as the origin and the up, the right (opposite to the left turtle vector),
and the heading vector scaled by the turtle radius parameter as axes of a coordinate system
into which coordinates of vertices are transformed. Thus point (0,0,0) in contour’s coordi-
nates corresponds to the pointP on the axis of a generalized cylinder and vertexV0, in our
example rotated by70� to lie on thex axis, is in the direction of the turtle’s up vector~U
(see Figure 12b).

The default circle contour with index 0 can be changed by module@#(id) whereid
specifies the contour’s index (see Appendix B.1). It is possible to use different contours
for subsequent control points of a generalized cylinder. LetF (u) = (Fx(u); Fy(u); Fz(u)),
u 2 h0; 1i, be the Hermite curve of the cylinder axis,R(t) = (Ru(t); Rv(t)), t 2 h0; 1i, the
curve representing the longitudinal section. IfVi are vertices on the contour at the bottom
of the generalized cylinder andV 0

i vertices on the contour at the top, the contour verticesUi

for a pointP (t) = F (Ru(t)), t 2 h0; 1i, on the axis of the generalized cylinder are:

Ui(t) = Vi + t(V 0

i � Vi)

and the radius of the contour isRv(t) (see examples in Figures 12c and 13c).

16

a) b) c)

Figure 14: A 2D contour (a) applied to a generalized cylinder (b) that was used as a part of
a cactus model (c).

Generalized cylinders in Figure 12b and 12c were created by interpretation of the string
@#(2)@Gsf(0.5)!@Ge(6)&(90)@c

and
@#(2)@Gsf(0.5)@#(0)!@Ge(6)&(90)@c

respectively. Both strings specify two control points with one or two different contours
(with index 2 and a default 0)1. The number of polygons along the contour was set to 32.

Figure 13a illustrates an example of a three-dimensional contour. The contour file from
the previous example was modified by adding a third coordinate to each contour control
point. This coordinate is equal to 0 in all but the first control point where it is 1. The
contour is applied to segments generated using the same strings as in Figure 12b and 12c.
The resulting generalized cylinders are in Figure 13b and 13c.

More realistic examples of the use of closed contours are shown in Figure 14 and Fig-
ure 15. The contour in Figure 14a was applied to branch segments (Figure 14b) of a cactus
Lemaireocereus chendein Figure 14c. The cactus was modeled by the following L-system:

1The two-dimensional contour was created in the drawing programxfig and converted to a text file with
coordinates of control points.

17

!: @#(2)@Ts(1,0.07)!(0.9)S FA(0)?H(0,0,0)E
p1: A(ord) > ?H(x,y,z) : y<0 ! %
p2: A(ord) ! FB(ord)/A(ord)
p3: B(ord) : ran(1) < 0.2-ord*0.1

! [-(90)/(nran(90,30))SA(ord+1)?H(0,0,0)E]
[+(90)/(nran(90,30))SA(ord+1)?H(0,0,0)E]

p4: B(ord) : ran(1) < 0.2-ord*0.1
! [-(90)/(nran(90,30))SA(ord+1)?H(0,0,0)E]

p5: B(ord) : ran(1) < 0.2-ord*0.1
! [+(90)/(nran(90,30))SA(ord+1)?H(0,0,0)E]

p6: B(ord) --> "

homomorphism
h1: S ! @Gs
h2: E ! @Gr(0,1,-45,1)!(0.01)@Ge(4)
h3: F ! f(0.5)@Gc(2)f(0.5)

The simulation starts with a single line segmentF followed by an apexA defined in the
axiom!. The productionp2 replaces the apex with a segmentF , a branch markerB, and a
new apexA. Productionsp3, p4, andp5 create either two branches or just one to the left or
one to the right with a probability decreasing with an increasing branch order (specified by
the parameter of modulesA andB). If none of them is applied, productionp6 removes the
branch markerB. Each apex is followed by a module?H for querying the turtle heading
vector. If an apex is oriented downwards, it is removed by the productionp1.

Generalized cylinders are introduced by homomorphism productions. The production
h1 replaces a moduleS appearing at the base of each branch by the first control point of a
generalized cylinder. A moduleE terminates a generalized cylinder with a pointed tip by
changing the tangent of the longitudinal section at the tip to (�45�,1). The productionh3
replaces a straight line segmentF with an invisible line segment with a control point in the
middle.

The plant (Aloe variegata) in Figure 15c was generated using the following L-system:
!: @Gr(1)A(25)!(0.8),(3)F(12)!(0.4)P(30)
p1: A(n): n>1 ! f(0.1)/(137.5)[-(15+2*n)L(10)]A(n-1)
p2: P(n): n>1 ! F(0.05+n/80)/(137)

[-(n*4)G(0.7+n/15)]P(n-1)
homomorphism
h1: L(s) ! [@#(2)@Tx(1),(1)!(s/4)@Gs-(10)f(s)-(15)

@Gr(5,1,-20,1)!(s/100)@Ge(10)]
h2: G(s) ! !(0.1)F(0.7)[]!(0.4),(2)

@#(3)!(2.7/4)@Gs-(10)f(s)-(15)
@Gr(0,4,-50,0.3)!(2/100),(2)@Ge(10)

The axiom defines the plant structure which consists of a whorl of thick leaves at the bottom

18

a) b) c)

Figure 15: A 2D contour (a) applied to a leaf (b). The whole plant with the whorl of leaves
(c).

(the moduleA) a tapered stemF and a phyllotactic pattern of flowers at the top (the module
P). The productionp1 produces a whorl of leavesL with a decreasing initial angle. Each
leaf is then visualized using the homomorphism productionh1 specifying two control points
of a generalized cylinder axis with a user-defined contour (Figure 15a). The shape of the
leaf is also controlled by the module@Gr modifying the tangents of the leaf longitudinal
section. The productionp2 produces flowersG visualized using the productionh2. The
flower contour is similar to the contour from the previous example (Figure 14a) and again
only two points of a generalized cylinder are defined.

Open contours
The previous section describes the use of closed contours. It may be useful to consider also
open contours which can be used to define the cross-section of a long thin leaf blade, for
example.

Open contours are defined in the same way as closed contours. The only difference is
thatn control pointsPi define(n � 3) B-spline segments specified by parametric B-spline
functionsFi(t), i = 0; :::; n � 1 for t 2 h0; 1i, based on four control pointsPi, Pi+1,
Pi+2, andPi+3. Since the same numberp of polygons is drawn along the open contour
as along the closed contour, the same number of contour verticesVi, i = 0; :::; p � 1 is
computed along the contour. This allows to use the same interpolation techniques between
two different open contours or an open contour and a closed contour as described above.

Figure 16 illustrates the use of an open contour (a) in a long leaf blade visualized using
a generalized cylinder (Figure 16b and 16c). The leaf blade is defined by the string:

-(40)@#(2)@Gs-(90)f(10)@Gr(1)@Gr(20,1.5,-20,1.5)@Gt(2,1)-(50)@Ge(20).

The first and the last contour control point is repeated three times to have the contour curve

19

a) b) c)

Figure 16: A contour defined as an open spline (a) is applied to a generalized cylinder (b,c).

a) b) c)

Figure 17: Shells generated by sweeping an open contour along a helico-spiral. Two con-
tours are interpolated in the third shell.

starting and terminating at the first and last contour control point, respectively.
Another example illustrates the application of an open contour to the shell model from

Section 3.2.2. Shells in Figures 17a and 17b use a conical and a triangular contour. The
L-system from Section 3.2.2 was modified by adding a rotation around the turtle heading
vector to properly orient the contour:

20

#define R 1.04 /* scaling between subsequent shell segment */
#define Ang1 -20 /* angle of rotation between segments */
#define Ang2 -3.9 /* angle of twist between segments */
#define Ang3 78 /* initial rotation of the contour */
#define Wid 5 /* width scaling */
!: #(5)@Gt(1.0)@#(2) n(Ang3)@Gs/(Ang3)A(1)
p1: A(s) ! +(Ang1)/(Ang2)F(s)A(s*R)
homomorphism
h1: F(s): ! f(s)#(s*Wid)-(Ang1/2) n(Ang3)@Gc(4)/(Ang3)+(Ang1/2)

In the case of the shell with the triangular contour, the L-system parameters are as follows:
R = 1:02, Ang1 = �20, Ang2 = �3, and the contour rotation angle isAng3 = 80.

The shell in Figure 17c was generated using the L-system:
#define R 1.02 /* scaling between subsequent shell segment */
#define Ang1 -20 /* angle of rotation between segments */
#define Ang2 -3 /* angle of twist between segments */
#define Ang3 86 /* initial rotation of the contour */
#define Wid 5 /* width scaling */

!: #(5)@Gt(1.0)@#(2) n(Ang3)@Gs/(Ang3)A(1,0)
p1: A(s,n) ! +(Ang1)/(Ang2)F(s,n)A(s*R,n+1)
homomorphism
h1: F(s,n): n %2==0 ! f(s)#(s*Wid)-(Ang1/2) n(Ang3)

@#(3)@Gc(6)/(Ang3)+(Ang1/2)
h2: F(s,n): n %2!=0 ! f(s)#(s*Wid*1.04)-(Ang1/2) n(Ang3)

@#(2)@Gc(6)/(Ang3)+(Ang1/2)
in which the odd and even shell segments have different contours.

The Pelican shell in Figure 18 uses two contours as in the previous example plus the
third contour for the opening. To generate the shell, the previous L-system was extended
by the following homomorphism production:

h1: F(s,n): n==Steps-1 ! +(ANG1/2)f(2*s)#(s*Wid)-(Ang1/2) n(Ang3)
@#(4)@Gc(6)/(Ang3)+(Ang1/2)

changing the contour for the very last shell segment (the index ofF is equal to the number
of simulation steps minus one). The L-system parameters are:R = 1:025, Ang1 = �20,
Ang2 = 3:6, andAng3 = 84.

3.3 Twist of generalized cylinders

As mentioned in Section 3.2.3, coordinates of contour vertices are rotated around thez axis
in the contour coordinate space so that the first vertex is on axisx. In the world coordinate
space it means that the first contour vertex lies in the direction of the turtle’s left vector. It
may happen, though, that the turtle left and up vectors are rotated around the heading vector

21

Figure 18: Pelican shell.

a) b) c)

Figure 19: A branch segment rendered with the original twist (a) and minimized twist (b).
Sometimes the twist is desired (c).

(using symbols= or n) between two control points. If contour vertices are always aligned
with the turtle orientation and the first vertex on the first contour is connected with the first
vertex on the second contour, the resulting generalized cylinder is twisted. An example of
twisted generalized cylinder is shown in Figure 19a. It results from the interpretation of the
string

@Gsf-(30)f n(180)@Ge(10).

22

N

H1

H2

V1
V2

N

45

45

N

H1

H2

V1

V2

N

90
90

H1

N=V1

H2

N=V2

Figure 20: Two consecutive frames with different angles between vector~Vi and the normal
~N of the plane of rotation.

To avoid the twist, the cross-section (contour) of a cylindrical mesh strip is aligned with
respect to the contour of the previous strip. Instead of rotating the first contour vertex to lie
on the turtle left vector, a new reference vector~V is computed and the first contour vertex
is placed in its direction from the turtle position. Thus, the turtle positionP , the heading
vector ~H, the vector~V , and the vector~H � ~V form a reference frame defining position and
orientation of the contour at a given point along the axis of the generalized cylinder.

There are several methods for constructing reference frames along a parametric curve.
A brief overview is given in [3]. For example, it is possible to determine three orthonor-
mal frame vectors from the parametric equation of the curve, as in the case of the Frenet
frame [5]. Unfortunately, the Frenet frame is undefined along straight line segments or can
be suddenly reversed on either side of an inflection point.

Other methods for constructing frames applicable to our problem include the rotation-
minimizing method used by Bloomenthal [2] to compute frames of tree limbs and the
double-cross method proposed by Sloan (mentioned in [3]).

The Bloomenthal’s rotation-minimizing method was selected. Having a previous set
of vectors (~H1, ~V1, ~H1 � ~V1), the curent frame (~H2, ~V2, ~H2 � ~V2) for a given vector~H2

is determined by rotating the frame (~H1, ~V1, ~H1 � ~V1) around ~H1 � ~H2 so that rotated
~H1 matches with~H2. Let us consider two adjacent stem segments. If they lie in one line
(~H1 = ~H2), the vector~V2 of the second one is the same as vector~V1 of the first one. If
they define a plane (with normal vector~H1 � ~H2), vectors~Vi of both segments have the
same angle with this plane and the same angle with the plane’s normal~H1� ~H2 because the
active frame 2 was constructed by rotating frame 1 around the vector~H1 � ~H2. Figure 20
shows three examples in which the angle of vectors~Vi with the two-segment plane normal
~N = ~H1 � ~H2 is (from left to right) 0, 45, and 90 degrees.

By default, generalized cylinders are drawn in such a way that their twist is minimized
to obtain smooth connections (see Figure 19b). To be able to create twisted segments (e.g.
ornamental structures such as the one in Figure 19c) it is possible to switch off the mini-
mization of the twist (see Appendix B).

23

a)

F

B

EE
FF

b) c) d)

Figure 21: A branch fork rendered as: a) straight segments, b) parametric curves (dots
denote control points), c,d) generalized cylinders (wireframe and shaded).

3.4 Branching of generalized cylinders

Branches in an L-system generated string are delimited by modules[and] . When module
[is interpreted, actual turtle parameters are pushed onto a stack. When a branch is finished
and module] is encountered, the turtle parameters are retrieved from the stack and another
branch can be interpreted. For example, the string:

F![+(40)!F!][-(25)F!]

is visualized in Figure 21a. The first segmentF supports two branches: to the left with an
angle of 40 degrees from the original direction and to the right with an angle 25 degrees.
Module! reduces the segment width by 0.1.

The branches can be visualized using generalized cylinders. A moduleB is placed at
the beginning of the branch and a moduleE at the end of each terminal branch segment to
start and terminate generalized cylinders:

BF![+(40)!F!E][-(25)F!E]

The following homomorphism productions replace each straight segmentF of length 1 with
an invisible segment of the same length with one control point in the middle (Figure 21b):

homomorphism
p1: B ! @Gb
p2: E ! @Ge(2)
p3: F ! f(0.5)@Gc(4)f(0.5)

creating a generalized cylinder shown in Figure 21c and 21d. Placing a control point in the
middle of each straight segment results in a generalized cylinder that closely follows the
original branching structure in Figure 21a.

Information about the active control point (the last one specified) is associated with
the turtle as one of the turtle parameters. Thus when the first branch is finished and turtle

24

parameters are retrieved from the stack, the second branch connects to the same control
point (in Figure 21a represented by a bigger dot) as the first branch.

Note that the branch visualized using generalized cylinders is very similar to the original
one, only the connection of branches is smoother. Since it is slower to draw generalized
cylinders than straight line segments, plant models are often developed using straight lines
to represent branches. If one module, for exampleB, is placed at the beginning of the
string and another symbol, e.g.E, at the end of each branch, the final structure can be
visualized using generalized cylinders with control points in the middle of each line segment
by applying the above homomorphism.

4 Surfaces

The material presented in this section has originally appeared in Jim Hanan’s Ph.D. disser-
tation [9].

4.1 Predefined surfaces

A standard computer graphics method for defining surfaces makes use ofparametric bicu-
bic patches[1, 6]. This technique is well suited for interactive design of arbitrary surface
shapes. The control points that define an individual patch can be modified using a graphical
interface [8, Section 4.2], and several patches can be combined to create a more complex
surface [8, Section 3.5]. The resulting surface definition can then be stored in a file for use
during turtle interpretation.

Predefined surfaces are incorporated into a plant model by extending the L-system al-
phabet. When the turtle encounters a symbol representing a surface preceded by a tilde
(�), the corresponding surface is drawn. The exact position and orientation of a predefined
surfaceS is determined using the user-definedcontact pointPS, heading vector~HS, and
up vector~US as references. The surface is translated in such a way that its contact point
matches the current position of the turtle, and is rotated to align its heading and up vectors
with the corresponding vectors of the turtle. If a surface represents an internal part of a
plant’s structure, the turtle is positioned at a user-definedend pointonce the surface has
been drawn.

The following L-system produces the apple blossom shown on the left side of Figure 22
in two derivation steps, given an angle increment of18�.

! : FFFFFB

p1 : B ! [S====S====S====S====S]
p2 : S ! [�C][�P][^ ^ F[�F][+F]]

The F’s in the axiom represent the blossom’s stem, while theB represents a bud. In the
first derivation step, productionp1 replaces the symbolB by five segmentsS separated by

25

Figure 22: Apple blossom and interactive surface editor

= symbols. In the second derivation step, productionp2 creates the three components of
each segment, a calyx leaf[�C], a petal[�P], and a stamen[^ ^ F[�F][+F]]. During turtle
interpretation, the predefined surfacesC, representing the leaf, andP, representing the petal,
will be incorporated into the image. These surfaces were designed using the interactive
surface editor shown on the right in Figure 22.

4.2 Developmental surfaces

Predefined surfaces do not “grow”; if a developmental sequence is required, surfaces rep-
resenting individual stages of surface growth must be separately defined and incorporated
into the model. An alternate approach is to allow the turtle to create polygons directly.
The opening brace “f” and the closing brace “g” are introduced as commands that delimit
the substring which determines the boundary of a polygon to be filled. When an opening
brace is encountered during interpretation, an emptylist of verticesrepresenting the current
polygon is created. Subsequently, whenever anF or f is interpreted, the resulting turtle
position is appended as a vertex on the list. Interpretation of the closing brace causes the
current polygon to be filled. Using this approach, L-system productions can be employed
in a number of different ways to change the size and shape of a polygon over time.

The first possibility is to trace surface boundaries using the turtle and fill the resulting
polygons, as in the L-system given below:

26

Figure 23: A model of a fern frond with polygonal leaflets

! : L

p1 : L ! f�FX + X� FX� j � FX + X+ FXg
p2 : X ! FX

Productionp1 defines leafL as a closed planar polygon. Productionp2 increases the lengths
of its edges linearly. This technique was used to model the leaflets on the fern branch in
Figure 23. Leaflets appear in order of age with the youngest at the top.

In practice, the tracing of polygon boundaries only produces acceptable effects for
small, flat surfaces. In other cases it is more convenient to use a tree structure as a frame-
work for a polygon. Vertices are specified by a sequence of turtle positions marked by the
dot symbol (.). An example is given in Figure 24. The letterG has been used instead ofF

to indicate that the segments enclosed between the braces should not be interpreted as the
edges of the constructed polygon. The numbers correspond to the order in which the turtle
specifies the vertices.

In the techniques discussed so far, the turtle specifies the vertices of one polygon, then
moves on to the next. Further flexibility in surface definition can be achieved by interleaving
vertex specifications for different polygons. In order to accomplish this, the interpretation
of braces is redefined as follows. A string containing nested braces is evaluated using two
data structures, the list of vertices representing the current polygon and apolygon stack. At
the beginning of string interpretation, both structures are empty. The interpretation of an
opening brace “f” initializes a new polygon list and pushes it onto the polygon stack. When
the turtle encounters a closing brace “g” it pops the current polygon from the top of the stack

27

{[++++G.][++GG.][+GGG.][GGGG.]

[−GGG.][−−GG.][−−−−G.]}
 1 2 3 4

5 6 7

1

2

3

4

5

6

7

Starting point

Figure 24: Surface specification using a branching structure as a framework. The numbers
correspond to the order of vertex specification by the turtle.

Starting point
1

2,3

4,5

6 7

8,9

10,11

[{+ . G . { . &G . { . &G .][−G[&G[&G .] . } .] . } . }]
1 2 3 4 5 6 7 8 9 10 11

Figure 25: Surface specification using stacked polygons. The numbers correspond to the
order of vertex specification by the turtle.

and draws the polygon specified by its list of vertices. An example of string interpretation
involving nested braces is given in Figure 25. This surface cannot be described using a
single pair of braces, since methods for filling non-planar polygons are not well defined.
Therefore, the figure is decomposed into three polygons connecting the following sets of
vertices:f1; 2; 11g, f3; 4; 9; 10g, andf5; 6; 7; 8g. Note that it is necessary to have separate
stacks for polygons and branches, as they operate independently. In this case, all three
polygons start in one branch and are completed in another.

28

4.3 Developmental bicubic surfaces

As described in previous Section, L-systems can be used to model the development of plant
organs, such as leaves and petals, using polygons which are modified over time. However,
bicubic surfaces provide a more convenient method for modelling smooth curved surfaces;
a very complex L-system would be required to produce a polygonal surface as smooth as a
bicubic patch. Developmental bicubic surfaces can be incorporated into a model using the
following set of black-box routines, which allow the specification of a Bezier-form bicubic
surface [1, 6, 8].

� @PS(i) initializes the four rows and columns of control points for surfacei to (0; 0; 0).

� @PC(i; r; c) assigns the current position of the turtle to the control point of surfacei

in row r and columnc.

� @PD(i; s; t) draws the surface defined by the control points of surfacei usings lines
along the rows andt along the columns.

The first step in creating a developmental model of a plant organ is to define the initial
and final shapes in the sequence. When using an interactive surface editor, the user works
with 16 control points for each surface patch. The manipulation of a three-dimensional
control point using a two-dimensional input device, such as a mouse, is not necessarily
straightforward. In addition, the creation of the symmetric shapes common in plant com-
ponents often requires the concerted readjustment of several control points, which can be a
tedious task using a standard interactive editor. Parametric L-systems can be used to imple-
ment a more intuitive set of parameters defining a particular class of surface shapes. The
following L-system allows the user to manipulate parameters for petal width, length, and
bending angles in order to model members of a family of petals. It is a simple hierarchical

29

model of one possible control point layout.

L-system 1: Bicubic surface petals
#define CL 100 /* Central length */
#define BW 35 /* Base width */
#define TW 35 /* Tip width */
#define BA 0 /* Base angle */
#define TA 0 /* Tip angle */
! : P

p1 : P ! [S[l][r]B[L][R]D]
p2 : S ! @PS(0)f(30)
p3 : B ! ^(BA)f(CL) ^ (TA)
p4 : D ! ; (100)@PD(0; 4; 4)
p5 : l ! +(90)f(BW)@PC(0; 0; 0) + (90+ atan(CL=BW))

[jf(CL=3)@PC(0; 1; 0)� (90) ^ (BA)f(BW � 2=3)@PC(0; 1; 1)]
[f(50)@PC(0; 0; 1)]

p6 : r ! �(90)f(BW)@PC(0; 0; 3) � (90+ atan(CL=BW))
[jf(CL=3)@PC(0; 1; 3) + (90) ^ (BA)f(BW � 2=3)@PC(0; 1; 2)]
[f(50)@PC(0; 0; 2)]

p7 : L ! +(90)f(TW)@PC(0; 3; 0) + (90� atan(50=TW))
[f(CL=3))@PC(0; 2; 0) + (90) ^ (TA)f(TW � 2=3)@PC(0; 2; 1)]
[jf(30)@PC(0; 3; 1)]

p8 : R ! �(90)f(TW)@PC(0; 3; 3) � (90� atan(50=TW))
[f(CL=3)@PC(0; 2; 3)� (90) ^ (TA)f(TW � 2=3)@PC(0; 2; 2)]
[jf(30)@PC(0; 3; 2)]

According to productionp1 a petal is composed of the start segmentS, left and right halves
of the leaf basel andr, the bodyB, left and right halves of the leaf tipL andR, and the
drawing segmentD. Productionp2 issues the patch initialization command@PS(0). The
f(30) module moves the turtle so that the edge of the surface will go through the turtle’s
initial position. The petal is modelled as two laterally symmetric halves, each consisting of
a base and tip portion. Productionsp5 andp6 define the leaf base by producing mirror-image
responses in the turtle with respect to the central axis. Productionsp7 andp8 do the same
for the leaf tip. Productionp3 defines the central length and relative angles of the base and
tip. Productionp4 specifies the colour command; (100) and the patch drawing command
@PD(0; 4; 4). As illustrated in Figure 26, the base of the leaf is defined by the first two rows
of control points in the bicubic patch, while the tip is defined by the last two rows. This
L-system allows the user to control a petal’s shape in terms of its central lengthCL, its tip
and base width,TW andBW, and the angles between base and center line,BA, and between
center line and tip,TA. The remainder of the angles and lengths are defined by the family
of surfaces to be modelled and the geometry of a Bezier patch. For instance, in order to

30

3,0

3,1 3,2

3,3

2,0
2,1 2,2

2,3

1,0 1,1 1,2 1,3

0,0

0,1 0,2

0,3

CL

TW

BW

TA

BA

Figure 26: Petal control structure. Control points are labelled by row and column.

a b c d e

Figure 27: Petal shapes

maintain first order continuity of the edge passing through a control point at a corner of the
patch, the control point and its neighbours in the outside row and column must be collinear.

31

Interactive manipulation of the parameters in the#define statements produced the
petal shapes in Figure 27, which correspond to the values in the following table.

Figure CL BW TW BA TA

a 150 5 5 25 50
b 150 15 5 0 50
c 120 20 25 12 -40
d 100 10 15 25 0
e 50 15 10 12 40

Once the initial and final shapes have been chosen, an L-system must be designed to
interpolate between the two shapes. For example, the following L-system interpolates be-
tween shapes e and c in Figure 27.

L-system 2: Developmental bicubic surface petal
#define N 10 /* Number of steps */
#define ICL 50 /* Initial central length */
#define FCL 150 /* Final central length */
#define IBW 15 /* Initial base width */
#define FBW 15 /* Final base width */
#define ITW 10 /* Initial tip width */
#define FTW 5 /* Final tip width */
#define IBA 15 /* Initial base angle */
#define FBA 0 /* Final base angle */
#define ITA 35 /* Initial tip angle */
#define FTA 50 /* Final tip angle */

32

L-system 2: Developmental bicubic surface petal - continued
! : P

p1 : P ! [S[l][r]B[L][R]D]
p2 : S ! @PS(0)f(30)
p3 : B ! ^(IBA; FBA; (FBA � IBA)=N)f(ICL; FCL; (FCL � ICL)=N)

^(ITA; FTA; (FTA � ITA)=N)
p4 : D ! ; (100)@PD(0; 4; 4)
p5 : l ! +(90)f(IBW; FBW; (FBW � IBW)=N)@PC(0; 0; 0) + (90 + atan(ICL=IBW);

90 + atan(FCL=FBW); (atan(FCL=FBW) � atan(ICL=IBW))=N)
[jf(ICL=3; FCL=3; (FCL � ICL)=3=N)@PC(0; 1; 0) � (90)
^(IBA; FBA; (FBA � IBA)=N)f(IBW � 2=3; FBW � 2=3; 2=3 � (FBW� IBW)=N)
@PC(0; 1; 1)][f(50)@PC(0; 0; 1)]

p6 : r ! �(90)f(IBW; FBW; (FBW � IBW)=N)@PC(0; 0; 3) � (90 + atan(ICL=IBW);
90 + atan(FCL=FBW); (atan(FCL=FBW) � atan(ICL=IBW))=N)
[jf(ICL=3; FCL=3; (FCL � ICL)=3=N)@PC(0; 1; 3) + (90)
^(IBA; FBA; (FBA � IBA)=N)f(IBW � 2=3; FBW � 2=3; 2=3 � (FBW� IBW)=N)
@PC(0; 1; 2)][f(50)@PC(0; 0; 2)]

p7 : L ! +(90)f(TW)@PC(0; 3; 0) + (90� atan(50=TW))
[f(ICL=3); FCL=3; (FCL � ICL)=3=N)@PC(0; 2; 0) + (90)
^(ITA; FTA; (FTA � ITA)=N)f(ITW � 2=3; FTW � 2=3;
2=3 � (FTW� ITW)=N)@PC(0; 2; 1)][jf(30)@PC(0; 3; 1)]

p8 : R ! �(90)f(TW)@PC(0; 3; 3) � (90� atan(50=TW))
[f(ICL=3; FCL=3; (FCL � ICL)=3=N)@PC(0; 2; 3)� (90)
^(ITA; FTA; (FTA � ITA)=N)f(ITW � 2=3; FTW � 2=3;
2=3 � (FTW� ITW)=N)@PC(0; 2; 2)][jf(30)@PC(0; 3; 2)]

p9 : f(v; V; i) : v < V ! f(v + i; V; i)
p10 : +(v; V; i) : v < V ! +(v+ i; V; i)
p11 : �(v; V; i) : v < V ! �(v + i; V; i)
p12 : ^(v; V; i) : v < V ! ^(v + i; V; i)

The turtle interpretation commands with values to be interpolated have three parameters:
v representing the current value,V representing the limit or final value, andi representing
the increment to be applied in each step. Productionsp1 to p8 are the same as before,
except that modules representing commands with parameters to be interpolated have the
appropriate initial values included. Productionsp9 to p12 control the linear interpolation of
lengths and angles. This L-system produces the sequence of images presented in Figure 28.
The sequence of flower heads shown in Figure 29 comes from an animation of rose campion
development produced by Prusinkiewicz and Hammel [13] using a similar technique.

The presence of parameters allows the specification of control points by row and column
number in the black-box routines. A less intuitive symbolic identification of the black-box
routines would have been required for standard L-systems.

33

Figure 28: Development of a petal

Figure 29: Development of a rose campion flowerc1991 P. Prusinkiewicz and M. Hammel

5 Textures

An important aspect of graphical modeling is the use of textures. In the existing implemen-
tation ofcpfg , textures can be defined as two-dimensional images which are mapped on a
given surface. One possibility is to use the image color directly on the surface. In that case,

34

though, the surface cannot be shaded. The other option is to multiply the surface diffuse
color by the intensity at a given pixel of the texture image. The intensity, ranging from 0 to
1, is either computed from the red, blue and green components of the image color using the
following formula [7]:

I = R � 0:299 +G � 0:587 +B � 0:114

or obtained directly from a single-channel image. Appendix B.2 explains how to switch
between these two modes.

5.1 Textured bicubic surfaces

The texture of a predefined bicubic surface can be specified either as a viewing attribute, in
which case all instances of the surface have the same texture, or can be set during the string
interpretation by module@Tx(index) where parameterindex specifies the texture in-
dex. The value of index can be equal to 0 (texturing is switched off) or to a number 1,2,3,...
corresponding to the first, second, third, etc., texture as specified in the view file (see Ap-
pendix B.2). The first option can be useful in case when a given surface, for example a leaf,
has one fixed texture associated with it. The second option is used when a surface can have
more than one texture. For example, there is a set of textures defined for a leaf surface and
for each instance of the surface, the texture is randomly selected from the set.

Another issue is how to map the texture on the surface, or how the object coordinates
(x; y; z) are transformed into the(u; v) coordinates of texels, pixels of the texture image.
For predefined bicubic surfaces, there are two ways texel coordinates are computed:

1. froms andt coordinates of each B´ezier patch representing the surface (boths, andt
varies from 0 to 1) (Figures 30b and 31a);

2. fromx andy coordinates of the entire surface scaled to the intervalh0; 1i (Figure 30c
and 31b).

The texture pattern is often distorted as in Figure 31a or does not match with the surface
shape (Figure 32b) and the texture image has to be warped. An example of an image with
a venation pattern warped to fit a leaf surface is shown in Figure 32. The middle vein is
moved to the left and the first two branched veins are adjusted to start from the leaf base.

Textures on developmental surfaces (defined within the L-system) can be set only during
the string interpretation.

5.2 Textured cylinders and generalized cylinders

Textures on line segments rendered as cylinders and generalized cylinders are set during
the string interpretation by symbol@Tx(index) . Parameterindex specifies the texture
index.

35

v

u0 1

1

a)

s1

t2

(0,0)

(0,1)

(1,1)(1,1)

(1,0)(1,0)

u=s1
v=t1

u=s2
v=t2

t1

s2

b)

y

xxmin xmax

ymax

ymin

x − xmin

xmax − xmin
u=

y − ymin

ymax − ymin
v=

c)

Figure 30: Transformation from object coordinates to texture coordinates (a): b) using
parameterss andt of the Bézier formula, c) using point coordinatesx andy.

a) b)

Figure 31: Chessboard texture on a surface: a) texture per patch, b) texture per surface.

Texel coordinateu ranges from 0 to 1 going around the segment circumference. Thev

coordinate increases along the segment in such a way that the aspect ratio of image pixels
mapped on the surface is always 1. If the circumference of the base disk of a cylindrical
segment isc and the segment length isl, the texelv coordinate is computed as:

v = bv0 + lRx=cRyc;

whereRx andRy are sizes of the texture image, andv0 is the final texel coordinate from the
previous line segments (Figure 33a). The very first line segments starts withv0 = 0 and the
last value of texelv coordinate for a segment is used as the starting value for the subsequent
segment to keep the continuity of the texture mapping.

The left and right side of the texture image are aligned to each other and the image is
repeated over and over along the stem. If the texture image is dark on the bottom and light

36

a) b) c) d)

Figure 32: Original texture (a) on a leaf (b). Warped texture (b) on the same leaf (d).

u

u=0 u=1 v=v0=0

v
v=1v=0

v=1

v0=0.5

a) b)

Figure 33: Mapping of a texture on a cylinder (a); textured branching generalized cylinder
(b).

on the top, for example, this will cause a visible discontinuity in the color of the surface
along the segment. Similarly, if the image is much darker on the left border than on the
right one, a visible stripe along the segment can be created. It is often necessary to modify
the texture image in such a way that the left border of the image matches the right border
and the top matches the bottom.

An example of a texture mapped to a branching generalized cylinder is shown in Fig-
ure 33b. The discontinuity of the texture in the branching point is caused by the fact that
branching generalized cylinders are created by overlapping two generalized cylinders fol-

37

h

rrmin rmax

hmax

hmin

r − rmin

rmax − rmin
u=

h − hmin

hmax − hmin

v=
H

R
V0

a) b)

Figure 34: Mapping of a texture on a polygon (a); a textured polygon (b).

lowing each daughter branch.

5.3 Textured polygons

Textures on polygons are set in the string by the symbol@Tx(index) the same way as
for surfaces, cylinders, or generalized cylinders.

Texture coordinatesu, v are determined from coordinatesh andr of polygon vertices.
The axesh andr are defined by the turtle heading vector~H and the right vector~R (equal
to the negative left vector~L) of the first polygon vertexV0. Similarly as in the case of
bicubic surfaces (Figure 30c),h andr coordinates are scaled to the intervalh0; 1i to obtain
texture coordinatesu, v (see Figure 34a). An example of a textured polygon is shown in
Figure 34b.

6 Response to directional stimuli

There are two categories of response to a directional stimulus. First, it is a mechanical
response to a force pulling the plant organs, e.g. wind or the gravity force. Second, the
plant can react actively by bending its organs away or towards the stimulus direction as in
case oftropisms.

A tropism is a plant movement during which the differential growth on the opposite
sides of a plant organ causes the organ to bend [18]. A tropism response is usually trig-
gered by a directional influence of gravity (gravitropism) or light (calledheliotropismor
phytotropism). Imagine, for example, a root that tries to grow downwards from the hori-
zontal position. The desired direction is achieved by faster growth of the upper side of the

38

root.
To simulate tropisms and the plant’s response to an external force, Prusinkiewicz in [15]

introduced a simple mechanism, which modifies the orientation of each line segment to-
wards or away from the stimulus direction. The angle between the original and the new
orientation is based on the angle between the line segment and the stimulus direction and a
parameter controlling the susceptibility of the segment to bending. Based on the computa-
tion of torque acceleration, the angle� by which the segment with orientation~H is rotated
towards the stimulus direction~T is:

� = ej ~H � ~T j; (1)

wheree is the parameter of segment’s susceptibility to the stimulus. If the parametere is
equal to 0, no adjustment is made. On the other hand, if it is too high (usually above 1, the
adjusted segment may “overshoot” and bend too much). Negative values cause stems to be
bent away from the stimulus direction. The response is bigger when the angle of the stem
and the vector~T is close to90� and lower when the stem is almost aligned with the stimulus
vector~T .

In case of tropisms, formula (1) can be extended to include more complex tropisms,
such as a plagiotropism when branches try to be perpendicular to the vector of gravity
or the general case, diatropism, when stems try to achieve an angle (not necessarily 90
degrees) with the tropism vector. If a segment with orientation~H tries to reach angle with
the tropism vector~T , the bending angle is (the full derivation is given in [10]):

� = e

0
@cos()� sin()

~H � ~T

j ~H � ~T j

1
A (~H � ~T) (2)

The adjustment of the segment’s orientation takes place during the interpretation, when
the L-system generated string is visualized, and the position and orientation of each inter-
preted module is known. During the simulation, the L-system model can only modify the
elasticity parameter.

Each tropism is defined in theviewfile (see Appendix B) by its vector, an angle a shoot
is trying to achieve with respect to the tropism vector, and two parameters:initial
elasticity andelasticity increment . Initial elasticity specifies the suscepti-
bility of a segment to the tropism. Its initial value can be modified in productions using
special control symbols mentioned bellow:

@Ts(index; value) sets the elasticity of tropism with indexindex to value. The parame-
ter index specifies the tropism according to the order of its specification in theview
file.

@Ti(index; value) increments the elasticity of tropism with indexindex by value.

39

Figure 35: Orthotropism effect for elasticity values 0, 0.1, 0.25, and 0.5.

Figure 36: Plagiotropism effect for elasticity values 0, 0.1, 0.25, and 0.5.

Figure 37: Diatropism effect for elasticity values 0, 0.1, 0.25, and 0.5.

@Td(index; value) decrements the elasticity of tropism with indexindex by value.

Without a specified value, modules@Ti and@Tdmodify the elasticity using the predefined
elasticity increment.

Figures 35, 36, and 37 illustrate the effect of an orthotropism (= 0), plagiotropism
(= 90�), and diatropism (= 60�) on a simple tree-like structure. The tropism vector is
(0,1,0) and the elasticity parameter varies from 0 (no adjustment) to 0.5.

Figure 38 illustrates the effects of gravity on a simple tree. The gravity is simulated by
defining an orthotropism with direction(0;�1; 0).

When a segment direction is changed, it is necessary to correctly compute the stem’s
up vector controlling the orientation of the unit with respect to its axis. The assumption
made is that the sequence of segments behaves as a rubber tube; in other words, it tries to
minimize any possible twist (see Section 3.3).

The twist minimizing adjustment of the turtle’s up vector can eliminate rotation around
the heading vector specified by symbols/ andn. To force such a rotation a symbol@Tf

40

Figure 38: Effect of gravity for elasticity values 0, 0.1, 0.2, 0.3, 0.4, and 0.5

should be inserted after each rotation symbol. The orientation of the up vector after the
forced rotation will then be considered as the base for a subsequent minimizing of the twist.

The mechanism of directional response allows the model to simulate basic plant re-
sponses to directional influences, such as stems growing towards or away from the light,
or the main stem growing upwards and main root growing downwards. The next section
introduces another new built-in mechanism twisting a plant segment as the response to a
directional stimulus. This mechanism combined with tropism can simulate the proper ori-
entation of leaves.

6.1 Response by twist

During the twist movement, the turtle up vector is rotated around the stem direction (turtle
heading~H). The up vector is rotated towards a vector~V specified as the projection of the
tropism vector~T onto the rotation plane (with normal~H):

~V = (~H � ~T)� ~H:

To obtain the rotation angle� the same formula as in the case of tropisms is applied with
~T = ~V :

� = ej ~H � ~V j

41

Figure 39: Twisting of leaf stalks using elasticity values 0, 0.1, 0.3, and 0.6.

After substituting for~V , it can be simplified to:

� = ej~T � ~Hj:

A twist is defined similarly as a tropism with only one difference: the angle parameters is
not used (see Appendix B).

Twists and tropisms belong to the same group of environmental effects. Thus the value
of the elasticity parameter can be changed using the same symbols@Ts, @T i, and@Td as
for a tropism. The index specifying a tropism or twist is then the order of the tropism or
twist specification in the view file.

Figure 39 illustrates the use of twist response on a twig with few leaves. A leaf stalk
consists of three short line segments which are twisted so the turtle up vector at the end of
the stalk points upwards making the leaf blade more exposed to the incoming light.

6.2 Combination of directional responses

The leaf twig from the previous example still does not look realistic, because the response
is more complex than just the twist of the stalk. Generally, a leaf is trying to orient its
blade perpendicularly to the direction of the incoming light. This can be achieved by com-
bining the twist from the previous example and a plagiotropism trying to orient the stalk
perpendicularly to the direction of light. In addition, the gravity force is pulling the leaf
down.

Following L-system incorporates all three directional responses to obtain a a better ori-
entation of leaves.
#definePE 0:0 /* perpendicular elasticity */
#defineTE 0:6 /* twist elasticity */
#defineGE 0:0 /* gravity elasticity */
#defineLA 35 /* leaf angle */
#defineLeaf [@T i(1; GE)@T i(2; PE)@T i(3; TE)n

!(0:02)F (:12)F (:12)F (:12) l]

42

Figure 40: Adjusting leaf stalks using plagiotropism with elasticity values 0, 0.1, 0.3, and
0.6.

Figure 41: Adjusting leaf stalks using gravitropism with elasticity values 0, 0.1, 0.3, and
0.6.

! : �(25)=(90)FLA
p1 : A! =(90)� (20)FLA
homomorphism
h1 : L! [; (8)[&(LA)Leaf]=(180)&(LA)Leaf]

The L-system creates three branch internodes with a pair of leaves at the end of each intern-
ode (using productionp1). The pair of leaves is visualized in homomorphism production
h1. Each leaf consists of a three-segment stalk and a bicubic surface defining the leaf blade.
The stalk orientation is adjusted using three mechanism of directional response:

1. a plagiotropism with direction(0; 1; 0) and angle90�;

2. a twist with direction(0; 1; 0);

3. a gravitropism with direction(0;�1; 0);

simulating effects of the light coming from the top and effects of the gravity force.
Figure 40 shows an increasing sensitivity of leaf stalks to the plagiotropism trying to

make the blade axis perpendicular to the light direction(0; 1; 0). Similarly, twigs in Fig-
ure 41 experience the effect of gravity pulling leaves down.

As can be seen in Figure 39 from the previous section and Figures 40 and 41, each of
the three effects simulated separately does not result in a proper orientation of leaves. If all
three mechanism are combined, as in Figure 42, the leaf orientation looks more realistic.

43

Figure 42: Adjusting leaf stalks using all three mechanisms with the same elasticity values
0, 0.1, 0.3, and 0.6.

44

A Interpreted symbols

During the visualization, the string of symbols is parsed from left to right and every time a
special symbol controlling the turtle is encountered the function associated with the symbol
is performed. Symbols with predefined interpretations are listed below.

Symbols with no parameters use default values specified at the beginning of the simula-
tion. If a symbol has more parameters than those specified bellow, the additional parameters
are ignored.

Turtle rotations
The turtle can be rotated only around its heading, left, or, up vector (Figure 43):

+(�) Turn left by angle�� around theU axis.

-(�) Turn right by angle�� around theU axis.

&(�) Pitch down by angle�� around theL axis.

^(�) Pitch up by angle�� around theL axis.

n(�) Roll left by angle�� around theH axis.

/(�) Roll right by angle�� around theH axis.

j Turn around180� around theU axis. This is equivalent to+(180) or -(180) . It
does not roll or pitch the turtle.

@v roll the turtle around theH axis so thatH andU lie in a common vertical plane with
U closest to up.

If no parameter is given for the symbols+, - , &, ^, n, and / , the value of the global
parameterangle increment is used.

Changing turtle parameters
The following symbols change turtle parameters:

;(n, n2) Increase the value of the current color index or material index by thecolor
increment , or set ton if a parameter is given. If two-sided materials are used –
the initial color index in theviewfile has two parameters (only in material mode) –
both indexes of the front and back material are increased or set ton. If an optional
second parameter is present, the index of the back material is set ton2.

45

H\
→

/
L

−+

U
→

→

^

&

Figure 43: Controlling the turtle in three dimensions

,(n, n2) Decrease the value of the current color index or material by thecolor increment ,
or set ton if a parameter is given. In case of two-sided materials, the function is the
same as for module;.

#(n) Increase the value of the current line width by the global parameterline width
increment , or set ton if a parameter is given.

!(n) Decrease the value of the current line width by the global parameterline width
increment , or set ton if a parameter is given.

@Tx(index) Sets texture with indexindex (the order of the texture specification in the
view file). Index 0 switches off texturing. If a predefined bicubic surface has asso-
ciated a texture index in the view file, its texture is fixed and cannot be changed by
module@Tx.

Changing position and drawing

F(d) Move forward a step of lengthd and draw a line segment from the original position
to the new position of the turtle. If the polygon flag is on (see the symbolsf andg),
the final position is recorded as a vertex of the current polygon. If no parameter is
given, the default step size 1 is used.

f(d) Move forward a step of lengthd without drawing a line. If the polygon flag is on,
the final position is recorded as a vertex of the current polygon. If no parameter is
given, the default step size 1 is used.

G(d) Move forward a step of lengthd and draw a line. If no parameter is given, the
default step size 1 is used.

46

g(d) Move forward a step of lengthd without drawing a line. If no parameter is given,
the default step size 1 is used.

@o(d) draw a circle of diameterd in the plane of the screen. If no parameter is given,
the current line width will be used.

@c(d) draw a circle of diameterd in theHL plane. If no parameter is given, the current
line width will be used.

@O(d) draw a sphere of diameterd. If no parameter is given, the current line width will
be used. The spheres produced can be shaded even in the colormap mode, since
a set of polygons approximating a sphere is generated using code from the widely
availablesphere.c file by Jon Leech (leech@cs.unc.edu).

The global parameterline style specifies whether the line is drawn as a line, polygon,
or a cylinder.

Modeling of structures with branches

[Push the current state of the turtle (all its parameters) onto a pushdown stack.

] Pop a state from the stack and make it the current state of the turtle.

% The symbol%cuts the remainder of a branch. Whenever it is detected in the string
during the generation process, it and all following symbols up to the closest un-
matched right bracket] are ignored for derivation purposes, and will therefore
disappear from the generated string. If an unmatched right bracket is not found,
symbols are ignored until the end of the string.

Symbols used to create polygons along withF and f

f start a new polygon by pushing the current turtle position onto the polygon stack
and set the polygon flag on.

g Pop a polygon from the stack and render it. If no more polygons are on the stack,
turn the polygon flag off.

. Place the current state of the turtle on the polygon stack if the polygon flag is on.

47

Drawing parametric bicubic surfaces

� Draw the predefined surface identified by the symbol immediately following the�

at the turtle’s current location and orientation. The control points, geometry and
neighborhood information for surfaces are read from surface specification files at
the beginning of the simulation.

@PS(i,basis) initializes the four rows and columns of control points for an L-system
defined surfacei to (0; 0; 0). The optional parameterbasisspecifies the type of
patch as:

1. Bézier,

2. B-spline,

3. Cardinal spline.

If no basis is given, the default, B´ezier, is used.

@PC(i,r,c) assigns the current position of the turtle to the control point of the L-system
defined surfacei in row r and columnc.

@PD(i,s,t) draws the surface defined by the control points of surfacei usings lines along
the rows andt lines along the columns.

Drawing generalized cylinders

@Gs Start a generalized cylinder in the current turtle position.

@Gc(strips) specifies a control point on the central line of the generalized cylinder.
The value ofstrips specifies how many mesh strips are drawn between the control
point and the previous one. The more strips are drawn the smoother the generalized
cylinder looks. If no parameter is given, one strip is drawn.

@Ge(rings) End a generalized cylinder. The parameterstrips controls the number of
strips as for symbol@Gc.

@Gr(angle1,length1,angle1,length2) specifies the slope and length of two
tangents of a Hermite curve defining the radius change as a longitudinal section
between two consecutive control points of a generalized cylinder axis (see Sec-
tion 3.2.2). As a default, the radii at the two control points are linearly interpolated
along the segment.

48

@Gr(flag) switches on (flag =1) or off (flag =0) an automatic adjustment of tan-
gents of a longitudinal section for segments of non-unit length. The longitudinal
section is always defined for a segment of a unit length and then stretched onto
the segment of a non-unit length. As a default, tangents are not adjusted after the
stretching (see Section 3.2.2 for more details).

@#(contour id) sets a different contour for the generalized cylinder. Contours are spec-
ified in the view file. A contour withid 0 is the default circle.

Changing tropisms parameters

@Ts(index, value) Set elasticity parameter of tropism with indexindex to value. In-
dex is given by the order of the tropism specification in the view file (starting with
1).

@Td(index[, value]) Decrease the elasticity parameter by the default elasticity incre-
ment specified in the view file or by the given valuevalue.

@Ti(index[, value]) Increase the elasticity parameter by the default elasticity incre-
ment specified in the view file or by the given valuevalue.

@Tp Prevent twist. This command adjusts the turtle’s up and left vector to minimize the
twist (see Section 3.3).

@Tf Force the twist. Since tropisms automatically force twist prevention, the effect of
symbols/ or n can be nullified. It is necessary then to add the symbol@Tf to force
the twist.

Symbols for Sub-L-systems

?(id,scale) Causes the generator to save a reference to the current L-system on a stack
and to use the list of productions from the sub-L-system identified byid during
subsequent production matching and application. During interpretation, the current
scale is saved on a stack and the structure resulting from interpretation of the gener-
ated substring is scaled byscale.

$ End the sub-L-system and return to the previous set of productions and scale.

Miscelaneous commands

@L("Label") prints the ”label” in the drawing window at the current turtle location
using the font specified in the view file.

@S("any system call") will make the system call when interpreted.

49

B View file commands

The graphical extensions described in the text include not only new modules with a specific
interpretation but also several view file commands setting initial parameters of the graphical
interpretation:

contour: allows the user to specify the cross-section of a generalized cylinder as a open
or closed Bézier spline (see below for more details);

contour sides: defines the number of polygons drawn around a contour;

twist of cylinders: switches on or off the twist minimizing method applied dur-
ing the visualization of generalized cylinders;

texture: specifies the texture and the way it is mapped on a surface.

The details of specification of contours and textures are given in the following sections.

B.1 Specification of contours

Contours are specified in the view file by the command:

contour: id contour_file

whereid is a unique positive number identifying the contour andcontour file is the
name of a text file containing a list of coordinates of control points.

The number of polygons around a contour can be also set in the view file by command:

contour sides: n

wheren specifies the number of polygons. Currently, this number is constant during the
interpretation.

The contour file has the following syntax: the first line contains a number of control
points, the dimension of the contour (2 or 3), and an identifier of an open or closed contour
(the wordopen or closed). Subsequent lines contain two or three coordinates of control
points, one point per line.

The contour in Figure 12a is specified by file:

12 2 closed
0.166482 -1.123751
0.416204 -1.040511
0.582686 -0.332963
1.082131 -0.041620

50

1.082131 0.499445
0.499445 0.541065
0.332963 0.915649
-0.374584 1.040511
-0.707547 0.624306
-1.123751 0.166482
-0.874029 -0.749168
-0.416204 -0.665927

The contour in Figure 13a is a three-dimensional extension of the previous contour:

12 3 closed
0.166482 -1.123751 1.0
0.416204 -1.040511 0.0
0.582686 -0.332963 0.0
1.082131 -0.041620 0.0
1.082131 0.499445 0.0
0.499445 0.541065 0.0
0.332963 0.915649 0.0
-0.374584 1.040511 0.0
-0.707547 0.624306 0.0
-1.123751 0.166482 0.0
-0.874029 -0.749168 0.0
-0.416204 -0.665927 0.0

The open contour in Figure 16a is defined by file:

15 2 open
-0.914286 -0.400000
-0.914286 -0.400000
-0.914286 -0.400000
-0.871429 -0.342857
-0.742857 -0.171429
-0.457143 -0.085714
-0.285714 0.142857
0.000000 0.271429
0.228571 0.114286
0.514286 0.142857
0.657143 -0.028571
0.892857 -0.114286
0.971429 -0.142857

51

0.971429 -0.142857
0.971429 -0.142857

Note that the first and the last control point is repeated three times to make sure the contour
starts and finishes in the given points.

It is possible to create a two-dimensional contour in a drawing programxfig and
convert it to the contour text file using a conversion utilityfig2con . It is necessary to use
either open or closed B´ezier spline for the contour and to define a reference circle specifying
the origin and scale of the contour coordinates. The createdxfigfile can be converted using
the command:

fig2con <contour.xfig >contour.spec

Currently, no utility for designing three-dimensional contours is provided. One possibility
is to create a two-dimensional contour inxfig and add the third coordinates by editing the
contour specification file.

B.2 Definition of textures

Textures are specified in the view file using a commandtexture :
texture: F: imagename H: magfilter L: min filter E: envmode S:

where

� the parameterimage name specifies the texture image. Currently, it is possible to
specify iris rgb, Utah raster toolkitrle, and targatga images (distinguished by the
extension). The image resolution can be arbitrary.

� commandsH, L, S, andE are optional.

� commandH: mag filter is used in case texture pixels viewed on the screen are
bigger than one window pixel. The flagmag filter is equal to:

– linear (or l only) — the texture image is smoothened when mapped onto the
surface;

– near(or n only) — the texture image is not smoothened, thus texture pixels can
appear as big squares.

The default isnear.

� commandL: min filter is used in case texture pixels viewed on the screen are
smaller than one window pixel. The flagmin filter is equal to:

52

– linear (or l only) — more texture pixels are used to compute the color of a given
pixel on the screen;

– near(or n only) — just one texture pixel is used to compute the color of a given
pixel on the screen. This mode is faster but can produce some aliasing effects.

The default isnear.

� commandE: env mode controls the way the texture is combined with the sur-
face color (see The OpenGL Programming Guide, chapter 9, section Modulating and
Blending). The flagenv modes is equal to:

– modulate(or m only) — the diffuse color of the surface material is multiplied
by the color of the texture pixel;

– decal (or d only) — the color of the texture pixel is used as the color of the
surface;

The default ismodulate.

� the commandS: is recognized only if the texture is used on bicubic surfaces pre-
defined in the view file. If the command is present in the texture specification, the
texture image is mapped onto the whole surface. Otherwise, the texture image is
mapped onto each surface patch separately.

As a default, the texture is mapped onto each patch. In this case, texture coordinates
are derived froms andt coordinates of the parametric equation of the B´ezier patch
representing the surface (boths, andt goes from 0 to 1). In the case of mapping onto
the whole surface, the surface boundaries alongx andy axes are found and the texture
is mapped intoz-plane so that it fits the surface bounding box inx andy coordinates
(see Section 5.1).

B.3 Definition of tropisms and twists

Tropisms and twists are specified in the view file using commandstropism or torque :
tropism: T: vector A: angle E: initialelasticity S: elasticityincrement
torque: T: vector E: initialelasticity S: elasticityincrement

where

� parametervector specifiesx, y, and z coordinates of the tropism vector. This
parameter has to be present.

� parameterangle specifies the diatropism angle. The default value is 0.

53

� parameterinitial elasticity defines the initial value of the elasticity param-
eter (if not present, the initial value is 0).

� parameterelasticity increment defines the value of elasticity increment used
by modules@Ti and@Td.

54

References

[1] R. Bartels, J. Beatty, and B. Barsky, editors.An introduction to splines for use in
computer graphics and geometric modeling. Morgan Kaufman, Los Altos, California,
1987.

[2] J. Bloomenthal. Modeling the mighty maple.Computer Graphics (SIGGRAPH ’94
Conference Proceedings), 19(3):305–311, July 1985.

[3] J. Bloomenthal.Skeletal Design of Natural Forms. PhD thesis, University of Calgary,
Calgary, Alberta, Canada, Jan 1995.

[4] H. S. M. Coxeter.Introduction to Geometry. J. Wiley & Sons, New York, 1961.

[5] I. D. Faux and M. J. Pratt.Computational Geometry for Design and Manufacture.
Ellis Horwood, Chichester, 1979.

[6] J. D. Foley and A. Van Dam. Fundamentals of interactive computer graphics.
Addison-Wesley, Reading, 1982.

[7] J. D. Foley, A. van Dam, S. Feiner, and J. Hughes.Computer graphics: Principles
and practice. Addison-Wesley, Reading, 1990.

[8] J. S. Hanan. PLANTWORKS: A software system for realistic plant modelling. Mas-
ter’s thesis, University of Regina, 1988.

[9] J. S. Hanan.Parametric L-systems and their application to the modelling and visual-
ization of plants. PhD thesis, University of Regina, June 1992.

[10] R. Měch. Tropisms in Lindenmayer systems.Unpublished manuscript.

[11] P. Prusinkiewicz. Graphical applications of L-systems. InProceedings of Graphics
Interface ’86 — Vision Interface ’86, pages 247–253, 1986.

[12] P. Prusinkiewicz. Applications of L-systems to computer imagery. In H. Ehrig,
M. Nagl, A. Rosenfeld, and G. Rozenberg, editors,Graph grammars and their appli-
cation to computer science; Third International Workshop, pages 534–548. Springer-
Verlag, Berlin, 1987. Lecture Notes in Computer Science 291.

[13] P. Prusinkiewicz and M. S. Hammel. Continuous Animation Using L-systems, Video
Tape, University of Calgary, 1991.

[14] P. Prusinkiewicz and J. Hanan.Lindenmayer systems, fractals, and plants, volume 79
of Lecture Notes in Biomathematics. Springer-Verlag, Berlin, 1989 (second printing
1992).

55

[15] P. Prusinkiewicz and A. Lindenmayer.The Algorithmic Beauty of Plants. Springer-
Verlag, New York, 1990.

[16] P. Prusinkiewicz and A. Lindenmayer.The algorithmic beauty of plants. Springer-
Verlag, New York, 1990 (second printing 1996). With J. S. Hanan, F. D. Fracchia, D.
R. Fowler, M. J. M. de Boer, and L. Mercer.

[17] W Sierpiński. Sur une nouvelle courbe qui remplit tout une aire plaine.Bull. Acad.
Sci. Cracovie, Śerie A, pages 462–478, 1912. Reprinted in W. Sierpi´nski, Oeuvres
choisies, S. Hartman et al., editors, pages 52–66, PWN –Éditions Scientifiques de
Pologne, Warsaw, 1975.

[18] E. Strasburger, F. Noll, H. Schenck, and G. Karsten.A Text-Book of Botany. MacMil-
lan and Co. Limited, London, 1908.

56

