
camera {

The POV-Ray camera has ten different models, each of which uses a different projection method to project the scene
onto your screen.
Regardless of the projection type all cameras use the location, right, up, direction, and keywords to determine the
location and orientation of the camera. The type keywords and these four vectors fully define the camera. All other
camera modifiers adjust how the camera does its job.
The meaning of these vectors and other modifiers differ with the projection type used. A more detailed explanation of the
camera types follows later. In the sub-sections which follows, we explain how to place and orient the camera by the use
of these four vectors and the sky and look_at modifiers. You may wish to refer to the illustration of the perspective
camera below as you read about these vectors.

camera {

file:///E|/POV/camera/camera.html [30/11/2000 00:33:58]

-/ types of projection \-

Default : perspective
Valid values : perspective | orthographic | fisheye | ultra_wide_angle | omnimax | panoramic | cylinder
1-2-3-4
Example :
camera {
 omnimax
 location <0, 2, -20>
 right <4/3, 0, 0>
 up <0, 1, 0>
 direction <0, 0, 1>
 look_at <0, 2, 10>
}

 perspective
The perspective specifies the default perspective camera which simulates the classic pinhole camera. The
(horizontal) viewing angle is either determined by the ratio between the length of the direction vector and the
length of the right vector or by the optional keyword angle, which is the preferred way. The viewing angle
has to be larger than 0 degrees and smaller than 180 degrees. See the figure in "Placing the Camera" for
the geometry of the perspective camera.

 orthographic
This projection uses parallel camera rays to create an image of the scene. The size of the image is
determined by the lengths of the right and up vectors.

If you add the orthographic keyword after all other parameters of a perspective camera you'll get an
orthographic view with the same image area, i.e. the size of the image is the same. In this case you needn't
specify the lengths of the right and up vector because they'll be calculated automatically. You should be
aware though that the visible parts of the scene change when switching from perspective to orthographic
view. As long as all objects of interest are near the look_at point they'll be still visible if the orthographic
camera is used. Objects farther away may get out of view while nearer objects will stay in view.

 fisheye
This is a spherical projection. The viewing angle is specified by the angle keyword. An angle of 180 degrees
creates the "standard" fisheye while an angle of 360 degrees creates a super-fisheye
("I-see-everything-view"). If you use this projection you should get a circular image. If this isn't the case, i.e.
you get an elliptical image, you should read "Aspect Ratio".

 ultra_wide_angle
This projection is somewhat similar to the fisheye but it projects the image onto a rectangle instead of a
circle.
The viewing angle can be specified using the angle keyword.

 omnimax
The omnimax projection is a 180 degrees fisheye that has a reduced viewing angle in the vertical direction.
In reality this projection is used to make movies that can be viewed in the dome-like Omnimax theaters. The
image will look somewhat elliptical. The angle keyword isn't used with this projection.

 panoramic
This projection is called "cylindrical equirectangular projection". It overcomes the degeneration problem of
the perspective projection if the viewing angle approaches 180 degrees. It uses a type of cylindrical
projection to be able to use viewing angles larger than 180 degrees with a tolerable lateral-stretching
distortion. The angle keyword is used to determine the viewing angle.

-/ types of projection \-

file:///E|/POV/camera/projection.html (1 sur 2) [30/11/2000 00:33:58]

 cylinder
Using this projection the scene is projected onto a cylinder. There are four different types of cylindrical
projections depending on the orientation of the cylinder and the position of the viewpoint. A float value in the
range 1 to 4 must follow the cylinder keyword.
The viewing angle and the length of the up or right vector determine the dimensions of the camera and the
visible image. The camera to use is specified by a number. The types are:
 1 vertical cylinder, fixed viewpoint
 2 horizontal cylinder, fixed viewpoint
 3 vertical cylinder, viewpoint moves along the cylinder's axis
 4 horizontal cylinder, viewpoint moves along the cylinder's axis

You should note that the vista buffer can only be used with the perspective and orthographic camera.

-/ types of projection \-

file:///E|/POV/camera/projection.html (2 sur 2) [30/11/2000 00:33:58]

location

Default : <0, 0 , 0>
Valid values : any vector

The location is simply the x, y, z coordinates of the camera. The camera can be located anywhere in the
ray-tracing universe.

camera {
 location < 5 , 6 ,-8>
 look_at < 0 , 0 , 0>
 }

location

file:///E|/POV/camera/location.html [30/11/2000 00:33:58]

angle

The angle keyword followed by a float expression specifies the (horizontal) viewing angle in degrees of the
camera used. Even though it is possible to use the direction vector to determine the viewing angle for the
perspective camera it is much easier to use the angle keyword.

When you specify the angle, POV-Ray adjusts the length of the direction vector accordingly. The formula
used is direction_length = 0.5 *right_length / tan(angle / 2) where right_length is the length of the right
vector. You should therefore specify the direction and right vectors before the angle keyword. The right
vector is explained in the next section.

There is no limitation to the viewing angle except for the perspective projection. If you choose viewing
angles larger than 360 degrees you'll see repeated images of the scene (the way the repetition takes place
depends on the camera). This might be useful for special effects.

angle

file:///E|/POV/camera/angle.html [30/11/2000 00:33:59]

direction

Default : <0 , 0 , 1>
Typical values : any vector
Example :
camera {
 location <5 , 2 , -3>
 direction <0 , 0 , 1>
 look_at <0 , 0 , 0>
 }

You will probably not need to explicitly specify or change the camera direction vector but it is described here
in case you do. It tells POV-Ray the initial direction to point the camera before moving it with the look_at or
rotate vectors (the default value is direction<0,0,1>). It may also be used to control the (horizontal) field of
view with some types of projection. The length of the vector determines the distance of the viewing plane
from the camera's location. A shorter direction vector gives a wider view while a longer vector zooms in for
close-ups. In early versions of POV-Ray, this was the only way to adjust field of view. However zooming
should now be done using the easier to use angle keyword.

If you are using the ultra_wide_angle, panoramic, or cylindrical projection you should use a unit length
direction vector to avoid strange results.

The length of the direction vector doesn't matter when using the orthographic, fisheye, or omnimax
projection types.

direction

file:///E|/POV/camera/direction.html [30/11/2000 00:33:59]

aperture

Default : 0
Typical values : 0.1-3
Example :
camera {
 location <10 , 10 , -10>
 blur_samples 100
 aperture 1
 variance 1/256
 confidence 0.99
 focal_point <0 , 0 , 0>
 look_at <0 , 0 , 0>
}

To turn on focal blur, you must specify the aperture keyword followed by a float value which determines the
depth of the sharpness zone. Large apertures give a lot of blurring, while narrow apertures will give a wide
zone of sharpness. Note that, while this behaves as a real camera does, the values for aperture are purely
arbitrary and are not related to f-stops

aperture

file:///E|/POV/camera/aperture.html [30/11/2000 00:33:59]

blur_samples

Default : 0
Typical values : 10-120
Example :
camera {
 location <10 , 10 , -10>
 blur_samples 100
 aperture 1
 variance 1/256
 confidence 0.99
 focal_point <0 , 0 , 0>
 look_at <0 , 0 , 0>
}

You must also specify the blur_samples keyword followed by an integer value specifying the maximum
number of rays to use for each pixel.
More rays give a smoother appearance but is slower. By default no focal blur is used, i. e. the default
aperture is 0 and the default number of samples is 0.

See confidence for example

blur_samples

file:///E|/POV/camera/blur_samples.html [30/11/2000 00:33:59]

confidence

Default : 0.9
Typical values : 0.9 -> 0.9999999 The higher, the slower (and the more accurate, but no more than 1)
Example :

camera {
 location <-3,1,-8>
 blur_samples 1000
 aperture 1
 variance 1/10000
 confidence 0.99999
 focal_point <0 , 0 , 0>
 look_at <2,0,0>
}

camera {
 location <-3,1,-8>
 blur_samples 10
 aperture 1
 variance 1/128
 confidence 0.9
 focal_point <0 , 0 , 0>
 look_at <2,0,0>
}

Although blur_samples specifies the maximum number of samples, there is an adaptive mechanism that
stops shooting rays when a certain degree of confidence has been reached. At that point, shooting more
rays would not result in a significant change. The confidence and variance keywords are followed by float
values to control the adaptive function. The confidence value is used to determine when the samples seem
to be close enough to the correct color. The variance value specifies an acceptable tolerance on the
variance of the samples taken so far. In other words, the process of shooting sample rays is terminated
when the estimated color value is very likely (as controlled by the confidence probability) near the real color
value.

Since the confidence is a probability its values can range from 0 to 1 (the default is 0.9, i. e. 90%). The value
for the variance should be in the range of the smallest displayable color difference (the default is 1/128).

Larger confidence values will lead to more samples, slower traces and better images. The same holds for
smaller variance thresholds.

confidence

file:///E|/POV/camera/confidence2.html [30/11/2000 00:34:00]

variance

Default : 1/128
Typical values : 1/128 -> 1/1000 The lower, the slower (and the more accurate, but always more than 0)
Example :
camera {
 location <10 , 10 , -10>
 blur_samples 100
 aperture 1
 variance 1/256
 confidence 0.99
 focal_point <0 , 0 , 0>
 look_at <0 , 0 , 0>
 }

Although blur_samples specifies the maximum number of samples, there is an adaptive mechanism that
stops shooting rays when a certain degree of confidence has been reached. At that point, shooting more
rays would not result in a significant change. The confidence and variance keywords are followed by float
values to control the adaptive function. The confidence value is used to determine when the samples seem
to be close enough to the correct color. The variance value specifies an acceptable tolerance on the
variance of the samples taken so far. In other words, the process of shooting sample rays is terminated
when the estimated color value is very likely (as controlled by the confidence probability) near the real color
value.

Since the confidence is a probability its values can range from 0 to 1 (the default is 0.9, i. e. 90%). The value
for the variance should be in the range of the smallest displayable color difference (the default is 1/128).

Larger confidence values will lead to more samples, slower traces and better images. The same holds for
smaller variance thresholds.

See confidence for example.

variance

file:///E|/POV/camera/variance2.html [30/11/2000 00:34:00]

focal_point

Default : < 0 , 0 , 0>
Typical values : any vector
Example :

camera {
 location <-3,1,-8>
 blur_samples 1000
 aperture 1
 varnciae 1/10000
 confidence 0.99999
 focal_point <0 , 0 , 0>
 look_at <2,0,0>
}

The center of the zone of sharpness is specified by the focal_point vector. Objects close to this point are in
focus and those farther from that point are more blurred.

focal_point

file:///E|/POV/camera/focal_point.html [30/11/2000 00:34:00]

sky

Default : <0 , 1 , 0>
Valid values : any vector
Example :

camera {
 location <0,0,-10>
 sky <0,1,0>
 look_at <0,0,0>
 }

camera {
 location <0,0,-10>
 sky <-1,1,0>
 look_at <0,0,0>
 }

Normally POV-Ray pans left or right by rotating about the y-axis until it lines up with the look_at point and
then tilts straight up or down until the point is met exactly. However you may want to slant the camera
sideways like an airplane making a banked turn. You may change the tilt of the camera using the sky vector.
For example:

This tells POV-Ray to roll the camera until the top of the camera is in line with the sky vector. Imagine that
the sky vector is an antenna pointing out of the top of the camera. Then it uses the sky vector as the axis of
rotation left or right and then to tilt up or down in line with the sky until pointing at the look_at point. In effect
you're telling POV-Ray to assume that the sky isn't straight up. Note that the sky vector must appear before
the look_at vector.

The sky vector does nothing on its own. It only modifies the way the look_at vector turns the camera.

sky

file:///E|/POV/camera/sky.html [30/11/2000 00:34:01]

up

Default : <0 , 1 , 0>
Valid values : any vector
Example :
camera {
 location < 3 , 5 , -10 >
 up < 0 , 1 , 0 > | y
 look_at < 0 , 2 , 1 >
 }

right

Default : <1.33 , 0 , 0>
Valid values : any vector
Example :
camera {
 location <3 , 5 , -10>
 right <1 , 0 , 0> | x*4/3
 look_at <0 , 2 , 1>
 }

In the default perspective camera, these two vectors also define the initial plane of the view screen before
moving it with the look_at or rotate vectors. The length of the right vector (together with the direction vector)
may also be used to control the (horizontal) field of view with some types of projection. The look_at modifier
changes both up and right so you should always specify them before look_at. Also the angle calculation
depends on the right vector so right should precede it.

Most camera types treat the up and right vectors the same as the perspective type. However several make
special use of them. In the orthographic projection: The lengths of the up and right vectors set the size of the
viewing window regardless of the direction vector length, which is not used by the orthographic camera.

When using cylindrical projection: types 1 and 3, the axis of the cylinder lies along the up vector and the
width is determined by the length of right vector or it may be overridden with the angle vector.
In type 3 the up vector determines how many units high the image is. For example if you have up 4*y on a
camera at the origin. Only points from y=2 to y=-2 are visible. All viewing rays are perpendicular to the
y-axis.
For type 2 and 4, the cylinder lies along the right vector. Viewing rays for type 4 are perpendicular to the
right vector.

Note that the up, right, and direction vectors should always remain perpendicular to each other or the image
will be distorted. If this is not the case a warning message will be printed. The vista buffer will not work for
non-perpendicular camera vectors. If you specify the 3 vectors as initially perpendicular and do not explicitly
re-specify the after any look_at or rotate vectors, the everything will work fine.

 Aspect Ratio

Together the up and right vectors define the aspect ratio (height to width ratio) of the resulting image. The
default values up<0,1,0> and right<1.33,0,0> result in an aspect ratio of 4 to 3. This is the aspect ratio of a
typical computer monitor. If you wanted a tall skinny image or a short wide panoramic image or a perfectly
square image you should adjust the up and right vectors to the appropriate proportions.

Most computer video modes and graphics printers use perfectly square pixels. For example Macintosh
displays and IBM SVGA modes 640x480, 800x600 and 1024x768 all use square pixels. When your intended
viewing method uses square pixels then the width and height you set with the Width and Height options or
+W or +H switches should also have the same ratio as the up and right vectors. Note that 640/480 = 4/3 so
the ratio is proper for this square pixel mode.

Not all display modes use square pixels however. For example IBM VGA mode 320x200 and Amiga
320x400 modes do not use square pixels. These two modes still produce a 4/3 aspect ratio image.
Therefore images intended to be viewed on such hardware should still use 4/3 ratio on their up and right
vectors but the pixel settings will not be 4/3.

up & right

file:///E|/POV/camera/up.html (1 sur 2) [30/11/2000 00:34:01]

Example :
camera {
 location <3 , 5 , -10>
 up <0 , 1 , 0>
 right <1 , 0 , 0>
 look_at <0 , 2 , 1>
}

This specifies a perfectly square image. On a square pixel display like SVGA you would use pixel settings
such as +W480 +H480 or +W600 +H600.
However on the non-square pixel Amiga 320x400 mode you would want to use values of +W240 +H400 to
render a square image.

The bottom line issue is this: the up and right vectors should specify the artist's intended aspect ratio for the
image and the pixel settings should be adjusted to that same ratio for square pixels and to an adjusted pixel
resolution for non-square pixels. The up and right vectors should not be adjusted based on non-square
pixels.

 Handedness

The right vector also describes the direction to the right of the camera. It tells POV-Ray where the right side
of your screen is. The sign of the right vector can be used to determine the handedness of the coordinate
system in use. The default value is: right<1.33,0,0>. This means that the +x-direction is to the right. It is
called a left-handed system because you can use your left hand to keep track of the axes. Hold out your left
hand with your palm facing to your right. Stick your thumb up. Point straight ahead with your index finger.
Point your other fingers to the right. Your bent fingers are pointing to the +x-direction. Your thumb now
points into +y-direction. Your index finger points into the +z-direction.

To use a right-handed coordinate system, as is popular in some CAD programs and other ray-tracers, make
the same shape using your right hand. Your thumb still points up in the +y-direction and your index finger
still points forward in the +z-direction but your other fingers now say the +x-direction is to the left. That
means that the right side of your screen is now in the -x-direction. To tell POV-Ray to act like this you can
use a negative x value in the right vector such as: right<-1.33,0,0>. Since having x values increasing to the
left doesn't make much sense on a 2D screen you now rotate the whole thing 180 degrees around by using
a positive z value in your camera's location. You end up with something like this.

camera {
 location < 0 , 0 , 10>
 up < 0 , 1 , 0>
 right <-1.33 , 0 , 0>
 look_at < 0 , 0 , 0>
 }

Now when you do your ray-tracer's aerobics, as explained in the section "Understanding POV-Ray's
Coordinate System", you use your right hand to determine the direction of rotations.

In a two dimensional grid, x is always to the right and y is up. The two versions of handedness arise from the
question of whether z points into the screen or out of it and which axis in your computer model relates to up
in the real world.

Architectural CAD systems, like AutoCAD, tend to use the God's Eye orientation that the z-axis is the
elevation and is the model's up direction.
This approach makes sense if you're an architect looking at a building blueprint on a computer screen. z
means up, and it increases towards you, with x and y still across and up the screen. This is the basic right
handed system.

Stand alone rendering systems, like POV-Ray, tend to consider you as a participant. You're looking at the
screen as if you were a photographer standing in the scene. The up direction in the model is now y, the
same as up in the real world and x is still to the right, so z must be depth, which increases away from you
into the screen. This is the basic left handed system.

up & right

file:///E|/POV/camera/up.html (2 sur 2) [30/11/2000 00:34:01]

look_at

Valid values : any vector
Example :
camera {
 location <5,6,-8>
 look_at <0,0,1>
 }

The look_at vector tells POV-Ray to pan and tilt the camera until it is looking at the specified x, y, z
coordinates. By default the camera looks at a point one unit in the z-direction from the location.

The look_at modifier should almost always be the last item in the camera statement. If other camera items
are placed after the look_at vector then the camera may not continue to look at the specified point.

look_at

file:///E|/POV/camera/look_at.html [30/11/2000 00:34:02]

normal {

Valid values :
agate | average(+map) | boxed | bozo | brick | bumps | checker | crackle | cylindrical | density_file(+file) |
dents | gradient | granite | hexagon | leopard | mandel(+val) | marble | onion | planar | quilted | radial | ripples
| spherical | spiral1(+val) | spiral2(+val) | spotted | waves | wood | wrinkles

The optional normal may be used to assign a normal pattern to the camera. For example:

Original picture

camera {

 location <-3,1,-8>
 look_at <2,0,0>
 normal { spiral1 2 }
 }

normal {

file:///E|/POV/camera/normal.html (1 sur 2) [30/11/2000 00:34:02]

camera {
 location <-3,1,-8>
 look_at <2,0,0>
 normal { bozo scale 0.5}
 }

All camera rays will be perturbed using this pattern. The image will be distorted as though you were looking
through bumpy glass or seeing a reflection off of a bumpy surface. This lets you create special effects. See
the animated scene camera2.pov for an example. See "Normal" for information on normal patterns.

normal {

file:///E|/POV/camera/normal.html (2 sur 2) [30/11/2000 00:34:02]

	Disque local
	camera {
	-/ types of projection \-
	location
	angle
	direction
	aperture
	blur_samples
	confidence
	variance
	focal_point
	sky
	up & right
	look_at
	normal {

