
X-Splines : A Spline Model Designed for the End-User

Carole Blanc Christophe Schlick

LaBRI�
351 cours de la libération, 33405 Talence (France)
[blanc jschlick]@labri.u-bordeaux.fr

Abstract
This paper presents a new model of spline curves and surfaces. The
main characteristic of this model is that it has been createdfrom
scratch by using a kind of mathematical engineering process. In a
first step, a list of specifications was established. This list groups
all the properties that a spline model should contain in order to
appear intuitive to a non-mathematician end-user. In a second step,
a new family of blending functions was derived, trying to fulfill as
many items as possible of the previous list. Finally, the degrees
of freedom offered by the model have been reduced to provide only
shape parameters that have a visual interpretation on the screen.
The resulting model includes many classical properties such as affine
and perspective invariance, convex hull, variation diminution, local
controlandC2=G2 orC2=G0 continuity. But it also includesoriginal
features such as a continuum between B-splines and Catmull-Rom
splines, or the ability to define approximation zones and interpolation
zones in the same curve or surface.

1 Introduction
Since the ground work in CAD during the late sixties, many different
models of splines have been introduced. One specific characteristic of
CAD is that the mathematical models developped by researchers are
later manipulated by non-mathematician end users (designers, archi-
tects, animators). Therefore, rather than its complete mathematical
properties, a major criterion for the evaluation of a splinemodel may
be the ability to understand intuitively the degrees of freedom that
it provides. A full study of existing spline models on that particular
point lies not within the scope of this short introduction, but let us just
take one or two examples.

The popularNURBS model is a good example in which the userhasto
be familiar with the mathematical structure to obtain best results. For
instance, the manipulation of the knot vector is really complex: first
the geometrical effects generated by these manipulations can hardly
be predicted, second these effects are not robust because further knot
manipulations may move them along the curve, and third the effects
are propagated along the whole isoparametric curves in the case of
surfaces. Even the manipulation of the weights may sometimes be
confusing: for instance, the modifications of two adjacent weights are
mutually cancelled [11].

The model that accounts the most for the ergonomics of the manipu-
lation is undoubtedly the�-spline model [1] which includes intuitive
shape parameters (tension and bias). Yet, if the behaviour of the�Laboratoire Bordelais de Recherche en Informatique(Université Bordeaux Iand
Centre National de la Recherche Scientifique). The present work is also granted by the
Conseil Régional d’Aquitaine.

model is really natural when using global tension and bias, the ex-
tended model [2] with local parameters is less convincing, mainly
because these parameters are not directly related to the control points.
Moreover, theC0=G2 continuity of the�-splines is lost by interpola-
tion, this makes them inadequate for many applications [9].

This paper proposes a new spline model that has been designedto
make user manipulations as intuitive as possible. Its formulation is
presented in four steps: Section 2 presents the list of specifications
for the new model, Section 3 explains the principle and the basic
formulation, Section 4 derives a more complete expression including
an original shape parameter, finally, Section 5 details the general
formulation.

2 Background

2.1 Definition
In their most general definition, splines can be considered as a math-
ematical model that associates a continuous representation (curve or
surface) with a discrete set of points of an affine space (usually IR2
or IR3). In the case of curves, this definition can be expressed as
follows: letPk 2 IR3 with (k = 0::n) be a set of points calledcontrol
points, and letFk : [0; 1] ! IR (with k = 0::n) be a set of functions
calledblending functions, the spline curve generated by the couples(Pk; Fk) is the curveC defined by the parametric equation:8t 2 [0; 1] C(t) = nXk=0 Fk(t) Pk (1)
According to the shape of the blending functions, the resulting curve
may eitherapproximatethe control points orinterpolatethem. Fig-
ure 1 and Figure 2 illustrate this distinction by showing twoclassical
examples of spline curves (cubic uniform B-splines [12] in Figure 1,
cubic Catmull-Rom [6] in Figure 2). Each figure is divided in two
parts, the top shows the control lattice and the curve, the bottom shows
the plots of the blending functions. The same graphical framework
will be used throughout the paper.

2.2 Properties
The family of curves that obeys Equation 1 is extremely vast and
thus many of its members are likely to be of little interest. In fact,
the work done over the years in the literature has exhibited many
properties that a spline model should include to become useful for
geometric modelling. In a recent survey, we have shown that all these
properties can be obtained by imposing specific constraintson the
blending functions [3].
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Figure 1: Uniform B-spline curve
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Figure 2: Catmull-Rom spline curve

Using that result, we are going to list now all the properties(as well as
the corresponding constraints on the blending functions) that we have
found vital or simply desirable to include in our user-oriented spline
model:� Affine invariance: The affine transformation of a spline should be
obtained by applying the transformation to its control points. This is
provided by thenormality constraint:8t 2 [0; 1] nXk=0 Fk(t) = 1 (2)�Convex hull: The spline should be entirely contained in the convex
hull of its control lattice. This is provided by the normality constraint
combined with thepositivity constraint:8k = 0::n 8t 2 [0; 1] Fk(t) � 0 (3)� Variation diminution : The number of intersections between the
spline and a plane (or a line, for 2D splines) should be at mostequal to
the number of intersections between the plane and the control lattice,
which means that the spline should have less oscillations than its
control lattice. This property is provided by combining thenormality,
the positivity with theregularity constraint:8k = 0::n 9Tk 2 [0; 1] = (4)

8t < Tk F 0k(t) � 0 and 8k0 = k+1::n Fk0(t) � Fk(t)8t > Tk F 0k(t) � 0 and 8k0 = 0::k�1 Fk0(t) � Fk(t)
This constraint may appear complex at a first glance, but it simply
says that the blending functions are bell-shaped and that two functions
cannot cross each other in the zone where they are simultaneously
increasing or decreasing.� Local control: Each control point should only influence the shape
of the spline in a restricted zone. This property is providedby the
locality constraint:8k = 0::n 9(T�k ; T+k ) 2 [0; 1]2 = (5)8t < T�k Fk(t) = 0 and 8t > T+k Fk(t) = 0
A spline may offer more or less local control according to theextent
of the influence of a given control point. To quantify this aspect, the
notion ofLp locality [3] can be used: a spline curve (resp. surface)
has gotLp locality when each control point influencesp segments
(resp. patches) at most.� Smooth shapes/Sharp shapes: The spline model should allow
both smooth shapes and sharp shapes and more precisely mixing
smooth zones and sharp ones in the same curve. It is well knownthat
parametric continuity does not provided any information onthe shape
of the curve; therefore one has to use geometric continuity:smooth
shapes areG2 at least, sharp shapes areG0 at most. On the other
hand, parametric continuity is needed to provide smooth motion in
animation; therefore the model should also provideC2 continuity.� Intuitive shape parameters: In addition to the control points, the
spline should also provide other degrees of freedom, usually called
shape parameters. But to be usable by a non-mathematician end user,
the role of these parameters should be as intuitive as possible. Among
all the shape parameters (knots, weights, tension, bias, curvature) that
we can find in existing spline models, only thelocal tension effect
(which allows the user to pull the curve locally toward one orseveral
control points) appears totally intuitive.� Existence of refinement algorithms: The spline model should
allow the use of refinement or subdivision techniques which are pow-
erful tools that increase the number of degrees of freedom for a spline
(control points or shape parameters) without modifying itsshape.� Representation of conics: The spline model should be able to
represent conic sections, and consequently a large set of curves and
surfaces (circles, ellipses, spheres, cylinders, surfaces of revolution,
etc) that are intensively used in CAD. The exact representation of
conics is one reason for the popularity of the NURBS model [3].
Nevertheless, having only a close approximation (up to the resolution
of the display, for instance) is sufficient for most applications.� Approximation/Interpolation : For some applications or some
users, approximation splines are preferable, whereas for others, in-
terpolation splines are imperative. For that reason, the model should
provide approximation splines and interpolation splines in a unified
formulation. Among the existing models, only the general Catmull-
Rom model [6] includes such a feature; but we would like to get
a step further by allowing the creation of approximation zones and
interpolation zones in the same curve.

In the following sections, we describe a new spline model which was
designed to fulfill as many items as possible of the previous list. At
the current stage in this development, all items but one (theexistence
of refinement techniques) are fulfilled by the model. The possibility
of including the last item will be discussed in the conclusion.

3 Basic X-Splines

3.1 Principle
Building a new spline model from scratch implies defining a new fam-
ily of blending functions. Among the constraints that have been listed



in Section 2, the most difficult to fulfill is the normality constraint.
Indeed, finding a family of functionsFk(t) that sum to one whatever
the value oft is a tricky task. For that reason, we have chosen to build
our blending functions independently of the normality constraint, and
then to apply in a final step, a normalization process which replacesFk(t) byFk(t):8t 2 [0;1] F k(t) = Fk(t)Pnk=0 Fk(t) (6)
Thus, the actual blending functionsF k(t) will be normalized rational
polynomials which, as a side-effect, adds the projective invariance
property to the resulting curves.

By combining the different properties recalled in Section 2, we can
establish that for a normal, positive, regular and local spline, each
blending functionFk(t) is bell-shaped, starts to grow at a given valueT�k , reaches its unique maximum at a second valueTk and drops to
zero at a third valueT+k (see Figure 3). In classical spline models,Fk(t) is defined by a piecewise polynomial or a rational piecewise
polynomial, composed of as many segments as consecutive intervals
betweenT�k andT+k (e.g. four segments with cubic B-splines).
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Figure 3: Configuration of the blending functions

The driving idea of the new model that we propose here is the follow-
ing: the non-null part of the blending function should be composed
of only two segments1. The first, calledF�k (t), is defined betweenT�k andTk; the second, calledF+k (t), is defined betweenTk andT+k .
In order to make this idea clearer, let us take the case of a spline in
which each control pointPk influences four segments of the curve
(i.e. L4 locality). This is a usual case (shared by every classical
model of cubic splines, for instance) and is often considered [2] as
the best trade-off between low degree splines on one hand (which are
closely related to the control lattice and thus can hardly provide very
smooth shapes) and high degree splines on the other hand (which can
hardly provide very sharp shapes).

By definition, for anL4 spline, each blending function is non-null
over four consecutive intervals of the knot vector:Fk(t) becomes
non-null at knottk�2, is maximal at knottk and becomes null again
at knottk+2 (the knots are shown on the top of Figure 3). AsFk(t)
is composed only of two segments, it depends only ontk�2, tk andtk+2. Thus there is a kind of alternation in the way the knots are
taken into account (even points use even knots and odd pointsuse odd
knots). Moreover, as we will see, the blending functionsFk�2 andFk+2 cross each other at knottk and all the derivation of the model
is based on this crossing. For that reason, we have called this new
model,cross-splinesor X-splines, for short.

3.2 Formulation
In fact, once the general principle has been established, the basic for-
mulation of the new model can be derived quite naturally. Letus first1In fact, we have also tried the case where the non-null part iscomposed of only one
segment. But this makes the modelmuch moreexpensive (degree8 rationalpolynomials)
with no additional features.

take the case of a uniform knot vector:8k = 1::n tk � tk�1 = �
If we apply the following reparametrization to the curve,u(t) = t� tk�2tk � tk�2 = t� tk�22� (7)
we are assured thatu = 0 at knottk�2 whereFk(t) starts to grow
andu = 1 at knottk whereFk(t) reaches its maximum. Therefore,
we have to find a polynomialf(u) defined on the range[0; 1] which
can be linked to the left part ofFk(t) by:F�k (t) = f � t� tk�22� � (8)
Because we want aC2 continuous curve, the following constraints
for the functionf(u) can be immediately derived:f(0) = 0 f 0(0) = 0 f 00(0) = 0 (9)
As the maximum of the blending function is reached atu = 1, its
first derivative is necessarily null. Moreover, we can setf(1) = 1
because the normalization step will reduce the maximum to its exact
value anyway. Finally, the second derivative atu = 1 can be set to a
given constant (we call this constant�2p to simplify the formulation):f(1) = 1 f 0(1) = 0 f 00(1) = �2p (10)
Thus we have derived a system of six constraints. As we searchfor a
polynomial solution, it will necessarily be quintic, in order to get six
degrees of freedom. By matching the constraints and the coefficients
of the polynomial, we obtain:fp(u) = u3 �10� p+ (2p� 15) u+ (6� p) u2� (11)
Moreover, the property of regularity requires an increasing function
on the range[0; 1] and thus a positive derivative. Therefore there is
an additional condition onp:0 � p � 10
The functionfp(u) (see Figure 4) provides the left part ofFk(t)
according to Equation 8. By reversing the direction and the origin of
the reparametrization, the right part ofFk(t) is obtained similarly:F+k (t) = fp � tk+2 � t2� � (12)
The two functionsF�k andF+k join at knottk with C2 continuity
(F 0k(tk) = 0 andF 00k (tk) = �p=2�2) which means that the global
blending functionFk(t), and therefore the whole curveC(t), areC2
continuous.



Figure 4: Functionfp(u) for p = 0; 2; 4; 6; 8; 10
Finally, we get the formulation for a segment of the curveC(t) on
the parameter range[tk+1; tk+2], defined by the four control pointsPk; Pk+1; Pk+2; Pk+3:C(t) = A0(t) Pk + A1(t) Pk+1 + A2(t) Pk+2 + A3(t) Pk+3A0(t) +A1(t) +A2(t) + A3(t) (13)A0(t) = fp � tk+2�t2� � A1(t) = fp � tk+3�t2� �A2(t) = fp � t�tk2� � A3(t) = fp � t�tk+12� �
The process defined above has provided aquintic rational approxima-
tion spline modelthat includes the properties of normality, positivity,
regularity, locality andC2 continuity. Moreover, the curves contain
a degree of freedomp 2 [0; 10] which allows a (slight) modification
of their shapes. It should be noticed that a very interestingcase is
obtained forp = 8. Indeed, after the normalization step, the blending
functions are very close to the cubic uniform B-splines basis func-
tions (see Figure 6). It means that the resulting curves — call them
basic X-splines— are almost identical to the uniform cubic B-splines
(compare Figure 5 and Figure 1).
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Figure 5: Basic X-spline curve

Figure 6: Similarity of the cubic uniform B-splines and the basic
X-splines blending functions (forp = 8)

4 Extended X-Splines

4.1 Formulation
The degree of freedomp in Equation 11 does not offer enough variety
in the shapes of the blending functions (see Figure 4) to provide inter-
esting effects on the resulting curves. Therefore, it appears somewhat
useless in the formulation of the new model. In fact, the existence
of this degree of freedom will be hidden to the end user. As we will
see below, this parameterp is needed to manage another parameters,
that we are going to introduce now and which is the actual degree of
freedom accessible by the end user.

Among the items of our list of specifications,tensionandangular
shapes(G0 continuity) can be included in our model by the same
derivation. Indeed, the basic idea which has led to the concept of
tension in the spline literature is to be able to strain the curve (or the
surface) in order to pull it toward the control lattice. At its limit, this
process forces the curve to interpolate one or several control points,
and due to the convex hull property, this interpolation willcreate sharp
edges.

To bring the curve closer to a given part of the control lattice, one
has to increase the influence of the corresponding control points.
A straightforward idea to realize this process is to add a specific
weighting coefficient to each control points. But, as we haverecalled
in Section 1, this solution (which is used in every classicalrational
spline) does not work in a satisfying way, because the influences of
neighbouring weights are mutually cancelled. Therefore, we propose
here an original solution to include the concept of tension,which does
not contain the drawback of the existing models.

To illustrate this new solution, let us take the blending functionsF2; F3
andF4 in Figure 3. We know thatF3 reaches its maximum att3. But,
asF2 andF4 are not null att3, the normalization process has set the
actual maximum toF3=(F2+F3+F4). Therefore, a way to increase
this maximum, in order to bring the curve closer to the control pointP3, is to decreaseF2(t3) andF4(t3).
We know that in the area of interest,F2 (respectivelyF4) decreases
(respectively increases) monotonically in the range[t2; t4]. Thus, to
obtain smaller values for these functions att3, one has to speed up
the decrease of the former and to slow down the increase of thelatter.
To realize these two operations symmetrically, we actuallypush the
crossing point ofF2 andF4 down toward the horizontal axis. For
that, we introduce a new degree of freedoms3 2 [0; 1] at pointP3.
This parameter will be used, first to compute the valueT+2 (whereF2
becomes null) by interpolation betweent4 andt3:T+2 = t3 + s3 (t4 � t3) = t3 + s3 �
and second, to compute the valueT�4 (whereF4 becomes non null)
by interpolation betweent3 andt2:T�4 = t3 + s3 (t2 � t3) = t3 � s3 �
In other words, it means thatF2 (respectivelyF4) is null all over the
range[T+2 ; t4] (respectively[t2; T�4 ]). The same operation can be



done for eachk. The resulting values(T�k ; T+k ) have to be replaced
in the reparametrization equations (Equation 8 and Equation 12) as
follows:F�k (t) = fp� t� T�ktk � T�k � F+k (t) = fp� t� T+ktk � T+k � (14)
The two parts ofFk(t) still join at tk, their first derivatives are still
null but their second derivatives are different:F 00k (t�k ) = �2p(tk � T�k )2 F 00k (t+k ) = �2p(tk � T+k )2 (15)
Here is the point where our parameterp will finally be used. Indeed,
in order to equal the left and right expressions, the only thing to do
is to use a specific value forp (notedpk�1) in F�k and another one
(notedpk+1) in F+k . Takingpk�1 = 2 (tk � T�k )2�2 and pk+1 = 2 (tk � T+k )2�2 (16)
gives F 00k (t�k ) = F 00k (t+k ) = � 4�2
which providesC2 continuity but assures also that the parameterspk
are in the range[0; 8] as needed to get the property of regularity and
to obtain the cubic B-splines as a limit case.

Therefore we can derive a new formulation2 for the segment of the
curveC(t)on the range[tk+1; tk+2]defined by the four control pointsPk; Pk+1; Pk+2; Pk+3:C(t) = A0(t) Pk + A1(t) Pk+1 + A2(t) Pk+2 + A3(t) Pk+3A0(t) +A1(t) +A2(t) + A3(t) (17)A0(t) = t > T+k ? 0 : fpk�1 � t� T+ktk � T+k �A1(t) = t > T+k+1 ? 0 : fpk � t� T+k+1tk+1 � T+k+1�A2(t) = t < T�k+2 ? 0 : fpk+1 � t� T�k+2tk+2 � T�k+2�A3(t) = t < T�k+3 ? 0 : fpk+2 � t� T�k+3tk+3 � T�k+3�pk�1 = 2�2 (tk � T+k )2 pk = 2�2 (tk+1 � T+k+1)2pk+1 = 2�2 (tk+2 � T�k+2)2 pk+2 = 2�2 (tk+3 � T�k+3)2
The expression ofC(t) seems complex but in fact it can be imple-
mented very compactly and efficiently (12 lines of source code in C
language).

So for the end user, anextended X-splineis totally defined by a
set of quadruples(xk; yk; zk; sk) with k = 0:::n. All these de-
grees of freedom have a very simple interpretation. The parameters(xk; yk; zk) 2 IR3 are the coordinates of the control pointsPk. The
parametersk 2 [0; 1] symbolizes thedistance between the curve and
the control lattice: whensk = 1, the curve passes relatively far away
from pointPk; whensk decreases, the curve comes closer and closer
to Pk; finally whensk = 0, the curve passes throughPk.

It should be noticed that the curve is alwaysC2 (due to the construction
process that has been used), even when it interpolates a control pointPk. But in that case, the first and second derivatives drop to zero at2We use here the (test ? a : b) operator borrowed from theC programming language
which allows one to write multiple expressions in a compact way.

tk and therefore the curve is usually (whenPk�1; Pk andPk+1 are
not aligned) onlyG0 atPk. In other words, it means that, even if it is
alwaysC2, the model enables the creation of angular points or sharp
edges.

4.2 Examples
This section demonstrates the role of the parametersk by showing its
influence on the resulting shapes. The basic formulation defined in
Section 3 is a particular case of the extendedone, where all parameterssk are set to one. As we have seen,basic X-splines are almost identical
to uniform cubic B-splines.

A first variant consists in settings0 andsn to zero in order to inter-
polate the end points of the control lattice and thus to enable better
control of the curve boundaries. The resulting curves — callthem
extremal X-splines (see Figure 7)— are very close to the classical
extremal cubic B-splines (also called non-periodic cubic B-splines).
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Figure 7: Extremal X-spline curves0 = 0; s1 = 1; s2 = 1; s3 = 1; s4 = 1; s5 = 1; s6 = 0
Let us now decrease the value of one parametersk (say s3). By
comparing Figure 7 and Figure 8, one can see that the crossingpoint
of F2 andF4 at knott3 has been pushed down.
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Figure 8: Augmentation of the influence of pointP3s0 = 0; s1 = 1; s2 = 1; s3 = 0:5; s4 = 1; s5 = 1; s6 = 0
Therefore, after the normalization step, the maximum ofF3 has been
increased and the curve has been pulled towardP3. Moreover, neither



the maximum ofF2 nor the maximum ofF4 has been modified.
This means that the curve has not changed nearP2 or P4: all the
modifications are localized in the neighbourhood of pointP3. More
precisely, one can show that a shape parametersk influences only
two segments of the curves which is half the extent of the other three
coordinates(xk; yk; zk) of pointPk (i.e. L2 locality rather thanL4).
While s3 decreases, the maximum ofF3 increases. Finally, fors3 = 0, this maximum is set to one, which provides a “sharp” (G0
continuous) interpolation of pointP3.
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Figure 9: Sharp interpolation of pointP3s0 = 0; s1 = 1; s2 = 1; s3 = 0; s4 = 1; s5 = 1; s6 = 0
TheL2 locality of the influence of the parameterssk allows the same
kind of action on several adjacent control points. For instance, if
we decreases2; s3 ands4, the curve is pulled simultaneously towardP2; P3 andP4,
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Figure 10: Augmentation of the influence ofP2, P3 etP4s0 = 0; s1 = 1; s2 = 0:5; s3 = 0:5; s4 = 0:5; s5 = 1; s6 = 0
and if we set the three parameters to zero, we obtain a sharp interpo-
lation of P2; P3 andP4 (see Figure 11). Finally, for the limit case
where all the parameterssk are set to zero, the curve merges with the
control lattice (see Figure 12). But notice that the curve isnota linear
spline because the parametrization isC2 here, whereas it is onlyC0
for linear splines.
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Figure 11: Sharp interpolation ofP2, P3 etP4s0 = 0; s1 = 1; s2 = 0; s3 = 0; s4 = 0; s5 = 1; s6 = 0
3 P6

P4 5P

P2P1

P0 P

1 F2 F3 F4 F5F0 F6F

Figure 12: Sharp interpolation of every control points0 = 0; s1 = 0; s2 = 0; s3 = 0; s4 = 0; s5 = 0; s6 = 0
This ability to mix smooth curves and sharp edges in an unrestricted
way makes the extended X-spline model a candidate of choice for
many applications. In vectorial font design, for instance,one switches
frequenty between smoothness and sharpness. Therefore, the use of
X-splines enables the design of characters with one single spline for
the outline (plus eventually one spline for each hole) defined by a
small number of control points (see left part of Figure 13)

To conclude this section, note that a very useful case is obtained when
the control lattice forms a regular polygon and all thesk are set to
one: the resulting curve is a circle (see right part of Figure13. In
fact, this circle is only an approximated one but this approximation
is so close (for 8 control points, the amplitude of the oscillations of
the curve around the true circle represents less than a factor 10�3 of
the radius, and for 12 control points, this variation is lessthan10�6)
that it is sufficient for most of the applications3. Starting from that
kernel case, other conics can be approximated as well with a similar
accuracy [5].3A similar result is obtained with B-splines [4], therefore it is not surprizing that it
holds also for X-splines which approximateB-splines in that particular configuration.



Figure 13: Font design and representation of the circle

5 General X-Splines

5.1 Formulation
As they have been formulated above, extended X-splines fulfill many
of the properties listed in Section 2. Nevertheless, even ifthey al-
low interpolating one or several control points, extended X-splines
are still approximation splines, because only sharp interpolations are
provided. The last feature of our list was the ability to manipulate the
same model either as an approximation spline or as an interpolation
spline. The goal of this section is to show how this characteristic can
be included in the X-spline model.

But, as recalled in Section 2, using interpolation splines implies for-
saking the positivity of the blending functions and therefore the con-
vex hull property. For some applications (and for some users), this
is inconceivable. For that reason, we have purposely separated this
extension from the previous section. So, the reader may choose be-
tween the formulation that fulfills the convex hull propertyand the
formulation that provides the approximation/interpolation duality.

In Section 4, we saw that when the value of the parametersk is
decreased, the blending functionF�k+1 (respectivelyF+k�1) becomes
null betweentk�1 andT�k+1 (respectivelyT+k�1 andtk+1). At the
limit case, whensk = 0, F�k+1 (respectivelyF+k�1) is null over the
whole range[tk�1; tk] (respectively[tk; tk+1]). Starting from that
configuration of sharp interpolation, to get a “smooth” (G2 continuity)
interpolation of pointPk, we must allowF�k+1 andF+k�1 to become
negative over these ranges. Moreover, in the same manneras we have
sought to approximate cubic B-splines with the basic formulation, we
will try to approximate cubic Catmull-Rom splines with thisgeneral
formulation.

If we apply the following reparametrization to the curve,u(t) = t� tktk+1 � tk = t� tk� (18)
we are assured thatu = �1 at knottk�1 whereF�k+1 gets negative,u = 0 at knottk whereF�k+1 gets positive, andu = 1 at knottk+1
whereF�k+1 reaches its maximum. Therefore, we have to find two
polynomials:g(u) defined on[0; 1]which represents the positive part
of F�k+1 andh(u) defined on[�1;0] which represents its negative
part. These two functions must join up atu = 0 with C2 continuity.
As in Section 3, we can derive a system of constraints but thistime
there are two functions, which means 12 constraints:

g(0) = 0 g0(0) = q g00(0) = 4qg(1) = 1 g0(1) = 0 g00(1) = �2ph(0) = 0 h0(0) = q h00(0) = 4qh(�1) = 0 h0(�1) = 0 h00(�1) = 0 (19)
whereq is a degree of freedom that controls the value of the first
derivative atu = 0 (the same degree of freedom has been used by
Duff in his tensed interpolation splinemodel [8]. All these constraints
can be fulfilled by two quintic polynomials:g(u) = q u+ 2q u2 + (10�12q�p) u3+ (2p+14q�15) u4 + (6�5q �p) u5h(u) = q u+ 2q u2 � 2q u4 + q u5 (20)
Starting from these equations, the same construction process detailed
in Section 3 provides a rational quintic interpolation spline model
that includes the properties of normality, locality andC2 continuity.
Moreover, the curves contain a degree of freedomq which allows
modification of their shapes.

Figure 14: Similarity of the cubic Catmull-Rom splines and the
general X-splines blending functions (forq = 1=2)

Two important remarks should be made about this model. First, as
in every interpolation spline model, the regularity property is lost,
thus the curve may have unwanted oscillations. We have observed
experimentally that these oscillations can usually be avoided by lim-
iting q to the range[0; 1=2]. Second, an interesting case is obtained
for q = 1=2 because the blending functions are very close to the
Catmull-Rom functions (see Figure 14). But it should be noticed that
the new functions areC2 continuous instead ofC1.
The final step of the construction of our new spline model willbe to
merge the parameters of the approximation model and the parameterq of the interpolation one. Here again, the goal is to simplifythe
degrees of freedom manipulated by the end user. Practically, only one
shape parametersk per control pointPk will be used. This is done
with the following convention:� When the user sets allsk in the range[0; 1], it means that

he wants to manipulate approximation splines. In that case,sk is the curve/lattice distance parameter defined in Section 4
(in particular, uniform cubic B-splines are approximated forsk = 1).� When the user sets allsk in the range[�1; 0], it means that
he wants to manipulate interpolation splines. In that case,qk
is obtained fromsk by qk = �sk=2 (so, sk = �1 providesq = 1=2 which approximates cubic Catmull-Rom splines).

The positive/negative distinction forsk indicates clearly that there is
a breaking point: for positivesk, the convex hull property is fulfilled,
for negativesk, it is not the case anymore. On the other hand the



intuitive notion of curve/lattice distance is preserved even for negativesk. Indeed, as we will see below, the moresk departs from zero, the
more the curve departs from the control lattice.

5.2 Examples

We already know that a “sharp” (G0 continuity) interpolation of the
control lattice can be obtained by setting allsk to zero (see Figure 12).
If we want to realize a “smooth” (G2continuity) interpolation, the only
thing to do is to set these parameters to negative values. Forinstance,
by setting allsk to�1, an interpolation spline almost identical to the
Catmull-Rom spline is obtained (compare Figure 15 and Figure 2).
As expected, the blending functions become partly negative, and thus
the convex hull property is lost.
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Figure 15: Smooth interpolation of every control points0 = s1 = s2 = s3 = s4 = s5 = s6 = �1
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Figure 16: Modification of the interpolations0 = 0; s1 = s2 = s3 = �1; s4 = s5 = �0:5; s6 = 0
By providing different values for the parametersk, the shape of the
interpolation curve can be controlled precisely. For instance, one
can enable very slack interpolation for a specific zone of thelattice
and a much tighter interpolation for another zone (see Figure 16).

And finally, what is perhaps the most interesting feature of the X-
spline model, one can combine without any restriction, positive and
negative shape parameterssk in order to create approximation zones
and interpolation ones in the same curve (see Figure 17).
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Figure 17: Approximation zones and interpolation zoness0 = 0; s1 = s2 = s3 = �1; s4 = s5 = 1; s6 = 0
6 Surfaces
The extension of the new model from curves to surfaces is straight-
forward. The only thing to do is to compute the tensor productof
two non-normalized X-spline curves and then to apply the normaliza-
tion step4. The characteristic of the X-splines to create all possible
geometric effects by using only uniform knot vectors is vital here
because, as we have recalled in Section 1, effects due to knotma-
nipulations (e.g. sharp edges for B-splines) are propagated along the
whole isoparametric curves. On the contrary, the shape parameters of
the X-spline model are directly related to the control points and thus
can be localized precisely on a given zone of the surface.

Because of the tensor product, two shape parametersrk andsk are
provided for each control pointPk whererk acts in theu direction
of the surface andsk acts in thev direction. A nice consequence is
that non-isotropic manipulations are allowed (for instance, creating
sharpness in one direction and smoothness in the other one).As a
counterpart, the behaviour of these parameters is a bit moresubtle
than previously:� rk > 0, sk > 0 : Pk is aC2=G2 approximation point� rk = 0, sk = 0 : Pk is aC2=G0 interpolation point� rk < 0, sk < 0 : Pk is aC2=G2 interpolation point� rk = 0, sk > 0 : Pk is an approximation point providingC2=G0 continuity inu andC2=G2 continuity inv� rk = 0, sk < 0 : Pk is an interpolation point providingC2=G0

continuity inu andC2=G2 continuity inv
Figure 19 and Figure 18 shows some examples of X-spline surfaces.
You should notice the ability to create interpolation of adjacentcontrol
points, localized sharp edges as well as soft transitions between sharp
and smooth zones; three features that are impossible (or at best, only
possible in specific cases) with any existing spline model.4This process is sometimes calledgeneralized tensor product[11]



Figure 18: Sharp extrusion from a smooth object

Note that the star-shaped flat face on the top of the object is composed
of two sides with straight edges (left and bottom) and two sides with
rounded edges (top and right). Straight sides create sharp edges
that are propagated all along the extrusion whereas the sharp edges
smoothly vanish when they come near the rounded sides of the top
face.

Figure 19: Smooth extrusion from a sharp object

7 Conclusion
In this paper, we have presented a new model of spline curves and
surfaces. This model includes many classical properties such as affine
and perpective invariance, convex hull, variation diminution, local
control andC2=G2 or C2=G0 continuity, as well as some original
features such as a continum between (an approximation of) B-splines
and (an approximattion of) Catmull-Rom splines, or the ability to
define approximation zones and interpolation zones in the same curve
or surface. These properties have been obtained by defining anew
family of blending functions that are quintic rational polynomials and
introducing an original shape parameter that provides, foreach control
point, a smooth transition between approximation, sharp interpolation
and smooth interpolation.

This paper is only intended as an initial presentation of X-splines.
For space limitations, several topics could not be includedhere. We
propose some additional results in [5] which should be considered as
the companion paper of this one. More precisely, the following topics
are discussed in it:� Some precisions on efficient implementation of X-splines:For

instance, one can show that even if they are quintic, rational
and provide more geometrical effects, uniform X-splines are
less expensive to compute than non-uniform cubic B-splines).� Lower order and higher order X-splines:Quintic polynomials
have been chosen here because we sought forC2=G2 continu-
ity, but in fact a similar construction process can be used for
any polynomial of degree2k+1providing splines withCk=Gk
continuity.� Extension to non-uniform knot vectors:Geometrical effects
generated by non-uniformity in classical splines can be created
by the shape parameters, so this extension is not that vital.
Nevertheless, non-uniform knots may be useful for key-frame
animation or data-fitting.



� Refinement algorithms:This is clearly a much harder task. For
the moment, we propose only some preliminary results on a
kind of De Casteljau subdivision algorithm.
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