|
|
|
|
|
|
| |
| |
|
|
|
|
| |
| |
|
|
Hi!
I'm just wondering if it's possible to use POV to help me draw 2D sin curves
or if anyone here knows of such a program. I don't want a plotter program
though.
Ulrik
Post a reply to this message
|
|
| |
| |
|
|
|
|
| |
| |
|
|
Ulrik wrote:
> Hi!
>
> I'm just wondering if it's possible to use POV to help me draw 2D sin curves
> or if anyone here knows of such a program. I don't want a plotter program
> though.
It could probably be done much better
(E.g.. better scaling of the axes and showing them),
but below is one possible solution.
I can try to explain if you need more help.
Tor Olav
--
mailto:tor### [at] hotmailcom
http://www.crosswinds.net/~tok/tokrays.html
#version 3.1;
#include "colors.inc"
camera {
location -16*z
look_at <0, 0, 0>
}
light_source { <5000, 1000, -20000> color White }
plane {
-z, 0
pigment {
checker color White color White + Blue
}
}
#macro PlotFunction(MinAngle, MaxAngle, NrOfSteps,
SphereRadius, AngleAxisLength)
#local RangeSize = MaxAngle - MinAngle;
#local StepSize = RangeSize/NrOfSteps;
#local Angle = MinAngle;
#while (Angle < MaxAngle)
#local xPos = Angle*AngleAxisLength/RangeSize;
#local yPos = MyFunction(radians(Angle));
sphere { <xPos, yPos, 0>, SphereRadius }
#local Angle = Angle + StepSize;
#end // while
#end // macro PlotFunction
#macro MyFunction(Angle)
4*sin(Angle)
#end // MyFunction
union {
PlotFunction(-360, 360, 200, 0.1, 20)
pigment { color Red }
}
/*
#macro MyFunction(Angle)
(4.2*sin(2*Angle) + 1.8*cos(8*Angle))
#end // MyFunction
union {
PlotFunction(-180, 360, 800, 0.1, 15)
pigment { color Green }
}
*/
sphere { <0, 0, 0>, 0.2 pigment { color 2*Yellow } }
Post a reply to this message
|
|
| |
| |
|
|
|
|
| |
| |
|
|
Ulrik <ulr### [at] hempassagense> wrote:
: I'm just wondering if it's possible to use POV to help me draw 2D sin curves
Of course.
#macro Function(X)
sin(X)
#end
#declare Step=.1;
#declare CurveThickness=.03;
#declare GridSize=10;
#declare GridThickness=.025;
//----------------------------------------------------------------------------
#default { finish { ambient 1 } }
camera { location -z*10 look_at 0 angle 45 orthographic }
#declare Ind=-GridSize/2;
#while(Ind<=GridSize/2)
#declare Col=(Ind=0?y:z);
cylinder
{ <Ind,-GridSize/2,GridThickness><Ind,GridSize/2,GridThickness>,GridThickness
pigment { rgb Col }
}
cylinder
{ <-GridSize/2,Ind,GridThickness><GridSize/2,Ind,GridThickness>,GridThickness
pigment { rgb Col }
}
#declare Ind=Ind+1;
#end
union
{ #declare X=-GridSize/2;
#declare oPos=<X,Function(X),0>;
#declare X=X+Step;
#while(X<=GridSize/2)
#declare Pos=<X,Function(X),0>;
cylinder { oPos, Pos, CurveThickness }
sphere { Pos, CurveThickness }
#declare oPos=Pos;
#declare X=X+Step;
#end
pigment { rgb 1 }
}
--
main(i,_){for(_?--i,main(i+2,"FhhQHFIJD|FQTITFN]zRFHhhTBFHhhTBFysdB"[i]
):_;i&&_>1;printf("%s",_-70?_&1?"[]":" ":(_=0,"\n")),_/=2);} /*- Warp -*/
Post a reply to this message
|
|
| |
| |
|
|
|
|
| |
| |
|
|
Wasn't it Ulrik who wrote:
>
>I'm just wondering if it's possible to use POV to help me draw 2D sin curves
>or if anyone here knows of such a program. I don't want a plotter program
>though.
Do you mean something like this?
#version unofficial MegaPov 0.4;
camera { location <0, 0, -3> look_at <0, 0, 0>}
background {rgb 1}
light_source {<-100,200,-100> colour rgb 1}
#declare Amplitude = 0.3;
#declare Frequency = 5;
#declare F = function {sin(Frequency*x)*Amplitude}
#declare Thickness = 0.02;
isosurface {
function {(y-F(x,0,0))^2 + z^2 -Thickness^2}
accuracy 0.00001
contained_by {sphere 0,2}
method 1
}
It produces a thread with cross section of the specified thickness that
follows the 2D shape specified by the function y=F(x).
--
Mike Williams
Gentleman of Leisure
Post a reply to this message
|
|
| |
| |
|
|
|
|
| |
| |
|
|
This thread has converted into a "who makes the best povray script to
draw a sine curve" competition :)
--
main(i,_){for(_?--i,main(i+2,"FhhQHFIJD|FQTITFN]zRFHhhTBFHhhTBFysdB"[i]
):_;i&&_>1;printf("%s",_-70?_&1?"[]":" ":(_=0,"\n")),_/=2);} /*- Warp -*/
Post a reply to this message
|
|
| |
| |
|
|
|
|
| |
|
|