POV-Ray : Newsgroups : povray.general : Bezier spline approximations to circles : Re: Bezier spline approximations to circles Server Time: 19 May 2019 10:30:50 GMT
  Re: Bezier spline approximations to circles  
From: Cousin Ricky
Date: 25 Jan 2019 21:09:09
On 2019-01-22 11:23 AM (-4), JimT wrote:
> If you want a Bezier Spline approximation to an arc of a circle subtending angle
> theta at the centre, the four control points are
> 
> (1,0), (1,a), (cos(theta) + asin(theta),sin(theta) -
> acos(theta)),(cos(theta),sin(theta))
> 
> where a = (8/3)(sin(theta/2) - sin(theta)/2)/(1-cos(theta))

Hmmm.  This is the formula for 'a' that I used for the ring shank cross 
section in GemCuts:

   #declare Gem__fn_Bezier_arc = function (x)
   { (8 * cos (x / 2) - 4 - 4 * cos (x)) / (3 * sin (x))
   }

Presumably, they are somehow the same formula, though I haven't figured 
out how to reduce one to the other.

> As mentioned before, this is tangent to the circle at theta/2 as well as the
> endpoints and outside the circle otherwise.  For theta = pi/2 the defect is
> 0.03% of the radius. For theta = pi it is 1.8%, still not bad, but for theta =
> 5pi/4 it is an unusable 7.6%.

My notes say that the curve deviates markedly from a circle if x > 90 
degrees (pi / 2), though I did not quantify the error.

> Tweaking a to have the spline cross the circle twice reduces the error only to
> about 70% of the value given and is probably not worth it.

For large angles I just use 2 segments.

I've actually tried multiple crossings to approximate a quadrant of a 
superquadric ellipse, but it required an arbitrary amount of fudging.  I 
do not have a general formula for this.  I also tried using two 45 
degree segments, but the result was horrible.

> If anyone wants code for a single segment Bezier Spline sphere sweep, I will
> post it again, since the last time was years ago.

There are two Object Collection modules that already do this for 
multiple segments: PointArrays and SphereSweep.


Post a reply to this message

Copyright 2003-2008 Persistence of Vision Raytracer Pty. Ltd.