
Gancaloon Project making of

Workflow Gancaloon Project

The techniques described below suppose the use of the following programs: Gimp or any
other paint program; GeoControl to generate height_field maps. Other programs like
Leveller may do the same thing though. Such a program is quite essential for generating
detailed landscapes and road tracks; Inkscape for generating POV-Ray prisms from
image_maps; POV-Ray for building and rendering scenes.

1. Landscape

Step 1: Drawing a contour map of the landscape using Gimp.

The contour map can be as detailed as necessary but serves as basis for further
processing. A large map (here 2048x2048 pixels) is better than a smaller one of course.

Step 2: The contour map is imported in the landscape program GeoControl and processed
using different layers (each containing the same contour map!) and different filters, until an
acceptable landscape is obtained. The result is exported in tga format.

© Thomas de Groot, 2012 1

Gancaloon Project making of

Step 3: In POV-Ray, the image_map is turned into a height_field function. Example:

#declare F_topo =
function {
 pigment {
 image_map {
 tga "MyLandscape.tga" gamma 1.0
 map_type 0 interpolate 2
 }
 warp {repeat x} warp {repeat y}
 scale 50
 warp {
 turbulence 0.2
 octaves 1 //[6]
 lambda 1 //[2]
 omega 0.2 //[0.5]
 }
 scale 1/50
 }
}

#declare MyHeightfield =
 height_field {
 function MyRes, MyRes {F_topo(x,y,z).hf}
 smooth
 translate <-0.5, 0, -0.5>
 transform {MyTrans}
 }

© Thomas de Groot, 2012 2

Gancaloon Project making of

The landscape textures (using slope{}) are then also added. As a help, a raster and axes
can be added to the landscape before rendering an orthographic view. Example:

Step 4: Use the orthographic view of the landscape to draw roads. Example:

© Thomas de Groot, 2012 3

Gancaloon Project making of

This roads image_map is then used as an additional layer in GeoControl to “erode” the
roads into the landscape. To do this:
1. Go to the Project tab and add a layer.
2. Within that layer, go to the Terrain tab and import the road image_map. Do not change

anything else and do not press the Generate button.
3. Go back to the Project tab. If roads are black on white, set Layer Method to “add”, else

to “substract”. Set Strength to 1 or 2.
4. Press the Rebuild button.

An identical roads image_map but coloured differently can be used as a road surface
texture layer over the landscape texture.

2. Urbanism

Step 1: “fake” urbanism. The urbanism is not detailed and only meant as illusion of a
crowded cityscape. Follow this work flow (adapt details as needed):

1. In e.g. GIMP and using an orthographic view of the landscape as a background, draw a
black/white city block bitmap layer following a street pattern layer (alternatively, the
street pattern can be drawn afterwards. See below).

2. Export the bitmap and scale it up 10x.
3. Add additional features according to need.
4. Import the bitmap in Inkscape
5. Apply Filters/Blurs/Blur content
6. Apply Paths/Trace Bitmap with (e.g.): Brightness Cutoff = 0.500; Suppress Speckles:

size 2; Smooth Corners: threshold 0.40; Optimize Paths: tolerance 0.20
7. Apply Paths/Simplify if needed (Beware: this rounds and shrinks the buildings)
8. Save as POV file (if you want to keep the svg file, save it as well)
9. Open in POV-Ray and change the object{} content as needed (e.g.): scale x an z by

1/10; scale up y; add textures; etc
10. translate to correct position, first by centering the object (use dimensions given in the

file) then by trial-and-error until correct (use an orthographic vertical view) and apply
the intersection with the “cutoff function” ycreated from a height_field and additional
functions. Because of the trial-and-error positioning it may be easier to draw the street
pattern afterwards.

To generate the “cutoff function” , using the same height_field as the landscape, the
following code can be used (with thanks to Christian Froeschlin):

#declare F_cells =
function {
 pigment {
 cells
 color_map {
 [0.1 rgb 0.4]
 [0.9 rgb 0.6]
 }
 scale 1/HF_scale.x //three scales compensating for prism object
 scale 20
 scale 0.1
 scale 0.5 //scale adapting to urbanism

© Thomas de Groot, 2012 4

Gancaloon Project making of

 }
}

#declare cell_size = 0.002;

#declare F_flatroof =
function {
 F_topo (int(x/cell_size)*cell_size, int(y/cell_size)*cell_size, int(z/cell_size)*cell_size).hf
 + (F_cells(x,y,z).hf)*0.1
}

#declare hf_copy =
height_field {
 function MyRes, MyRes {F_flatroof(x,y,z)}
 smooth
 translate <-0.5, 0, -0.5>
 transform {MyTrans}
}

The “fake” urbanism is then generated by an intersection:

intersection {
 object {Urbanism //the prism object generated by Inkscape
 translate <-AllShapes_CENTER_X/10, 0, -AllShapes_CENTER_Y/10>
 translate <MyX, 0, MyZ>
 }
 object {hf_copy
 texture {T_var scale 0.1 scale 0.5}
 scale <1, 1, 1>
 translate -0.5*y
 }
}

Step 2: Urban scenes. These can be rendered separately from the master scene as long
as little or nothing is visible from the landscape. Before building the scene, it is good to
have at least some notion about the underlying topography of the scene.

To be able to embed the city scene (CityScene.pov) into the master scene
(MasterScene.pov) which contains the landscape height_field, an important switch is
necessary in both.

At the beginning of CityScene.pov, just after the #version declaration, add:

#ifndef (Standalone) #declare Standalone = on; #end

In MasterScene.pov, this will correspond to the following lines, anywhere in the scene
where you want CityScene.pov to be rendered:

#declare Standalone = off;
#include “CityScene.pov”

Now, in CityScene.pov you can put within an #if statement every scene element that
should only be switched on when the scene is rendered independently, such as
global_settings{}, camera{}, sky_sphere{}, light{}, etc. Example:

© Thomas de Groot, 2012 5

Gancaloon Project making of

#if (standalone)
 global_settings {...}
 camera {...}
 light{...}
#end

Any other element not included in the switch will be rendered whether the switch is on or
off. However, as some transformation is probably necessary when rendered in
MasterScene.pov, declare a union{} of all those elements in CityScene.pov. Example:

#declare MyStreet =
union {
 object {MyHouses}
 object {MyFigures}
 object {MyStreetFurniture}
 etc
}

#if (Standalone)
 object {MyStreet}
#end

In MasterScene.pov, the street scene can now be rendered by adding the following code:

#declare Standalone = off;
#include “CityScene.pov”

#declare Norm = <0,0,0>;
#declare Street_pos = trace (MyHeightField, <MyX, 1000, MyZ>, -y, Norm);

object {MyStreet
 scale MyScale
 rotate y*MyAngle
 translate Street_pos
}

This is the basic method. Additional switches can be defined according to need and/or the
complexity of the street scene.

© Thomas de Groot, 2012 6

