|
|
|
|
|
|
| |
| |
|
|
|
|
| |
| |
|
|
Anyone know how I might go about making the helix conform to the surface of
the sphere? I'm using f_helix1(x,y,z,6,-1,.15,.85,1,1,0) from functions.inc.
thanks
--
Kevin
http://www.geocities.com/qsquared_1999/
#macro _(r)#if(r<12)#local i=asc(substr("oqshilacefg",r,1))-97;
disc{<mod(i,7)-3,div(i,7)-1,6>,z,.4pigment{rgb 10}}_(r+1)
#end#end _(1)//KL
Post a reply to this message
Attachments:
Download 'helix.jpg' (20 KB)
Preview of image 'helix.jpg'
|
|
| |
| |
|
|
|
|
| |
| |
|
|
Kevin Loney <klo### [at] pt2mcom> wrote in message news:3cdc51b1@news.povray.org...
> Anyone know how I might go about making the helix conform to the surface of
> the sphere? I'm using f_helix1(x,y,z,6,-1,.15,.85,1,1,0) from functions.inc.
This works quite well, though it looks like min_radius changes even though I
don't change it:
#declare f_Distort2DRadiusToSphere =
function(y,fSphereRad,f2DRad) {
sqrt(max(fSphereRad*fSphereRad - y*y,0))*f2DRad/fSphereRad
}
isosurface {
function {
f_helix1(x,y,z,6,-1,.15,f_Distort2DRadiusToSphere(y,.7,.7)+.15,1,1,0)
}
max_gradient 4
contained_by { box { -<1,.7,1>, <1,.7,1> } }
}
Post a reply to this message
Attachments:
Download 'hel.jpg' (11 KB)
Preview of image 'hel.jpg'
|
|
| |
| |
|
|
|
|
| |
| |
|
|
Thats exactly what I was looking for, thanks
--
Kevin
http://www.geocities.com/qsquared_1999/
#macro _(r)#if(r<12)#local i=asc(substr("oqshilacefg",r,1))-97;
disc{<mod(i,7)-3,div(i,7)-1,6>,z,.4pigment{rgb 10}}_(r+1)
#end#end _(1)//KL
Post a reply to this message
|
|
| |
| |
|
|
|
|
| |
|
|