POV-Ray : Newsgroups : povray.binaries.images : Fourier series Server Time
20 Nov 2024 02:37:39 EST (-0500)
  Fourier series (Message 1 to 4 of 4)  
From: Anton Sherwood
Subject: Fourier series
Date: 21 Oct 2001 04:20:43
Message: <3BD286CA.439974CD@pobox.com>
I took the Fourier transform of motion at constant speed around a
rectangle.  The ellipse at the foreground end of this tube is the first
nonzero component of the resulting series; it is quickly squared off as
higher-frequency components are added (180 in all).

(It's a mesh with 360*180 vertices.)

On the way to this image, I learned a better understanding of Fourier
series!

-- 
Anton Sherwood


Post a reply to this message


Attachments:
Download 'squaround.jpg' (10 KB)

Preview of image 'squaround.jpg'
squaround.jpg


 

From: Slime
Subject: Re: Fourier series
Date: 22 Oct 2001 21:36:55
Message: <3bd4c9b7@news.povray.org>
I assume that as we look towards the back of the object, we see the places
where more terms have been added. So, as you added term after term, how did
you calculate the value "inbetween" the terms? linear interpolation?

Is this a parametric object or a mesh?

- Slime
[ http://www.slimeland.com/ ]
[ http://www.slimeland.com/images/ ]

"Anton Sherwood" <bro### [at] poboxcom> wrote in message
news:3BD286CA.439974CD@pobox.com...
> I took the Fourier transform of motion at constant speed around a
> rectangle.  The ellipse at the foreground end of this tube is the first
> nonzero component of the resulting series; it is quickly squared off as
> higher-frequency components are added (180 in all).
>
> (It's a mesh with 360*180 vertices.)
>
> On the way to this image, I learned a better understanding of Fourier
> series!
>
> --
> Anton Sherwood


----------------------------------------------------------------------------
----


Post a reply to this message

From: Anton Sherwood
Subject: Re: Fourier series
Date: 24 Oct 2001 02:17:56
Message: <3BD65E8F.7A93C356@pobox.com>
When I showed this image to my dad, he saw it as something flat, and
took the colors within the ellipse to be the important part -- and was
baffled that I said it had something to do with Fourier series!

As usual, I used a shiny texture and a multicolored sky.  Rays within
the tube bounce around and emerge at `random' angles, whence the chaos.


Slime wrote:
> I assume that as we look towards the back of the object, we see the
> places where more terms have been added. So, as you added term after
> term, how did you calculate the value "inbetween" the terms? linear
> interpolation?

Yes.  See the creases at the first few terms?


> Is this a parametric object or a mesh?
> 
> "Anton Sherwood" <bro### [at] poboxcom> wrote
> > (It's a mesh with 360*180 vertices.)


-- 
Anton Sherwood


Post a reply to this message

From: Slime
Subject: Re: Fourier series
Date: 24 Oct 2001 02:44:32
Message: <3bd66350$1@news.povray.org>
Coooool.

- Slime
[ http://www.slimeland.com/ ]
[ http://www.slimeland.com/images/ ]

"Anton Sherwood" <bro### [at] poboxcom> wrote in message
news:3BD65E8F.7A93C356@pobox.com...
> When I showed this image to my dad, he saw it as something flat, and
> took the colors within the ellipse to be the important part -- and was
> baffled that I said it had something to do with Fourier series!
>
> As usual, I used a shiny texture and a multicolored sky.  Rays within
> the tube bounce around and emerge at `random' angles, whence the chaos.
>
>
> Slime wrote:
> > I assume that as we look towards the back of the object, we see the
> > places where more terms have been added. So, as you added term after
> > term, how did you calculate the value "inbetween" the terms? linear
> > interpolation?
>
> Yes.  See the creases at the first few terms?
>
>
> > Is this a parametric object or a mesh?
> >
> > "Anton Sherwood" <bro### [at] poboxcom> wrote
> > > (It's a mesh with 360*180 vertices.)
>
>
> --
> Anton Sherwood


Post a reply to this message

Copyright 2003-2023 Persistence of Vision Raytracer Pty. Ltd.