|
|
"Bald Eagle" <cre### [at] netscapenet> wrote:
> I just started watching Daniel Schiffman's video this morning - I was hoping to
> start writing some code based on it after work.
Well, I got partway there.
I'm botching _something_ up (as usual).
I need to stop blindly hacking and do some more thinking and learning.
#version 3.8;
global_settings {assumed_gamma 1.0 }
#declare S3 = sqrt(3);
#declare M = 3;
#declare C1 = < 1, 0, 1>+M*(x+y);
#declare C2 = <-1, 0, 1>+M*(x+y);
#declare C3 = < 0, S3, 1>+M*(x+y);
camera {
location M*<1, S3/2, -2.25>
right x*image_width/image_height
up y
look_at M*<1, S3/2, 0>
//rotate y*15
}
sky_sphere {pigment {rgb 1}}
light_source {< 0, 0, -150> rgb 1}
#declare Line = 0.005;
cylinder {-x*100, x*100, Line pigment {rgb x}}
cylinder {-y*100, y*100, Line pigment {rgb y}}
#declare k4curvature1 = function (k1, k2, k3) {k1 + k2 + k3 + 2 * sqrt (k1*k2 +
k2*k3 + k3*k1)}
#declare k4curvature2 = function (k1, k2, k3) {k1 + k2 + k3 - 2 * sqrt (k1*k2 +
k2*k3 + k3*k1)}
// Make every circle a vector: <Real, Imaginary, Radius>
// Start out with <R, I, 0> to do math, and then tack on radius in last step
// That way add, subtract, and scalar multiplication are all just operations on
a vector
#macro Re(Z) Z.x #end
#macro Im(Z) Z.y #end
#macro Mult(z1, z2) <Re(z1)*Re(z2) - Im(z1)*Im(z2), Re(z1)*Im(z2) +
Im(z1)*Re(z2)> #end
#macro Sqrt (Z)
#local m = sqrt ( Re(Z)*Re(Z) + Im(Z)*Im(Z) );
#local Angle = atan2 (Im(Z), Re(Z)) / 2;
#local NewZ = sqrt(m)*<cos(Angle), sin(Angle)>;
NewZ
#end
#macro ComplexDescartes (C1, C2, C3, k4)
// z41 = (z1*k1 + z2*k2 + z3*k3 + 2 * sqrt (z1*k1*z2*k2 + z2*k2*z3*k3 +
z3*k3*z1*k1)) / k4
// z42 = (z1*k1 + z2*k2 + z3*k3 - 2 * sqrt (z1*k1*z2*k2 + z2*k2*z3*k3 +
z3*k3*z1*k1)) / k4
#local k1 = 1/C1.z;
#local k2 = 1/C2.z;
#local k3 = 1/C3.z;
#local z1 = <C1.x, C1.y>;
#local z2 = <C2.x, C2.y>;
#local z3 = <C3.x, C3.y>;
#local zk1 = z1*k1;
#local zk2 = z2*k2;
#local zk3 = z3*k3;
#local Sum = zk1 + zk2 + zk3;
#local Square = Mult (zk1, zk2) + Mult (zk2, zk3) + Mult (zk3, zk1);
#local Root = Sqrt (Square);
#local z41 = (Sum + 2*Root) / k4;
#local z42 = (Sum - 2*Root) / k4;
#local Z41 = z41 + <0, 0, 1/k4>;
#local Z42 = z42 + <0, 0, 1/k4>;
#local Result = array [2] {Z41, Z42};
Result
#end
#macro Circle (C)
torus {abs(C.z), Line pigment {rgb 0} rotate x*90 translate <C.x, C.y, 0>}
#end
#declare k41 = k4curvature1 (1/C1.z, 1/C2.z, 1/C3.z);
#declare k42 = k4curvature2 (1/C1.z, 1/C2.z, 1/C3.z);
#declare C41 = ComplexDescartes (C1, C2, C3, k41);
#declare C42 = ComplexDescartes (C1, C2, C3, k42);
#if (0)
Circle (C1)
Circle (C2)
Circle (C3)
Circle (C41[0])
Circle (C42[1])
#end
#macro DrawCircles (Array)
#local Circles = dimension_size (Array, 1)-1;
#for (C, 0, Circles)
Circle (Array [C])
#end
#end
#declare AllCircles = array;
#declare AllCircles [0] = C1;
#declare AllCircles [1] = C2;
#declare AllCircles [2] = C3;
#declare Queue = array;
#declare Queue [0] = array [3] {C1, C2, C3};
//#declare Queue [0] = C1;
//#declare Queue [1] = C2;
//#declare Queue [2] = C3;
#declare Levels = 3;
#macro Gasket (RecursionLevels)
#for (L, 0, RecursionLevels)
#local Triplets = dimension_size (Queue, 1)-1;
#for (T, 0, Triplets)
DrawCircles (Queue [T])
#end
#declare NextQueue = array;
#local QIndex = 0;
#for (T, 0, Triplets)
#local triplet = Queue [T];
#local c1 = triplet [0];
#local c2 = triplet [1];
#local c3 = triplet [2];
#local k41 = k4curvature1 (1/c1.z, 1/c2.z, 1/c3.z);
#local k42 = k4curvature2 (1/c1.z, 1/c2.z, 1/c3.z);
#declare new1 = ComplexDescartes (c1, c2, c3, k41);
#declare new2 = ComplexDescartes (c1, c2, c3, k42);
#local T1 = array [3] {c1, c2, new1[0]};
#local T2 = array [3] {c2, c3, new1[1]};
#local T3 = array [3] {c3, c1, new1[1]};
#local T4 = array [3] {c1, c2, new2[1]};
#local T5 = array [3] {c2, c3, new2[1]};
#local T6 = array [3] {c3, c1, new2[1]};
//#local T6 = array [3] {c2, c3, new1[1]};
#declare NextQueue [QIndex] = T1;
#local QIndex = QIndex + 1;
#declare NextQueue [QIndex] = T2;
#local QIndex = QIndex + 1;
#declare NextQueue [QIndex] = T3;
#local QIndex = QIndex + 1;
#declare NextQueue [QIndex] = T4;
#local QIndex = QIndex + 1;
#declare NextQueue [QIndex] = T5;
#local QIndex = QIndex + 1;
#declare NextQueue [QIndex] = T6;
#end // end for T
#declare Queue = NextQueue;
#end // end for L
#end
Gasket (Levels)
Post a reply to this message
Attachments:
Download 'appolonian_gasket.png' (62 KB)
Preview of image 'appolonian_gasket.png'
|
|